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Abstract—Cloud based data centers (DC) offering of virtually
unlimited processing and storage capabilities faced a critical
downside related to the enormous power consumption require-
ments. Powering and cooling DC has considerable share of
the total DC operational costs in addition to the carbon tax.
Server consolidation has been proposed as one viable solution
that guarantees efficient power usage while maintaining quality
of service requirements for the DC’s services. This approach
is simply about turning on and off the DC resources based
on the incoming workload. In this paper, we are extending
our previous work on expansion strategies for cloud services
providers by considering the server consolidation technique in
order to maximize the DC revenues while maintaining their
service quality and reducing their carbon footprints.

I. INTRODUCTION

Cloud computing (CC) paradigm promised services to be
provided to the end users with the minimum users awareness
of the hardware/softwares infrastructure running their applica-
tions. This will enable the users to focus on their core appli-
cations development and their business model enhancements.
The burden of handling the logistics related to the computing
infrastructure, networking, storage and security is moved to
the cloud service providers (CSP) on a pay-as-you-go model.
The increasing trend of companies and individuals migrating
to CC causes a similar increase in the number of CSP. CSP
are competing with each other to provide the best Quality
of Service (QoS) to their customers while maximizing their
revenues [1], [2].

To achieve the aforementioned objectives, the CSP are
forced to expand their services capabilities and to build more
and more geographically distributed data centers (DC) to
handle the increasing demands. At the same time, they are
optimizing their DC activities to reduce their operational
costs. Power consumptions used in operating and cooling DC
represent a major chunk of the total operational costs for
running a cloud DC. Hence, optimizing power consumptions
in DC received a lot of attention from both academia and the
industry.

Revenue maximization for CSP requires a holistic view of
DC expansion strategies and operational costs minimization
(e.g., power usage). The DC expansion strategies focus on
creating new DC to handle the ever increasing demand for
resources while maintaining high QoS provided to the users
based on the Service Level agreement (SLA) with them. This
needs to be in line with the return on investment for the CSP.

On the other hand, the power consumption optimization will
consider the economical aspects of the DC operations that
will satisfy the incoming workload. While expanding current
DC or building new DC depend on different factors like
land costs and the availability of the supporting infrastructure
(e.g., the electrical power sources), the power consumption
optimizations can be implemented on a fine grained level like
computing servers or network switches.

In this paper, we are extending our previous work on the
expansion strategies for cloud DC, which includes building
new DC or expanding currently operating DC [1], [2]. The
extension includes the power usage optimization using an
approach known as server consolidation. Current servers are
powered on all the time with average server utilization of about
15% to 20%. The server consolidation aims to increase the
average utilization by reducing the number of active servers.
This is achieved by powering off underutilized servers without
impacting the ability of the system to satisfy the customers’
QoS requirements and meet the SLAs. Our proposed model
takes into consideration the potential availability of renewable
energy sources to power the DC.

The rest of this paper is organized as follows. A detailed
related work is presented in Section II. In Section III, we
present our extended system model with all constraints. The
model evaluation and the results discussion are presented in
Section IV. Finally, we conclude this paper in Section V.

II. RELATED WORKS

Perhaps, the closest work to ours is [3]. The authors em-
ployed server consolidation where server workload predictions
were used to make decisions in order to efficiently manage
the system and minimize energy consumption. They suggested
a new model for finite buffer which allows the server to be
turned on/off by a load-dependent control using multi-parallel
hysteresis thresholds.

In [4], the authors presented a snapshot-based solution for
the server consolidation problem in order to reduce energy
consumption. They also took into account some issues such as
reducing the total number of virtual machine (VM) migrations
(where VM are migrated to switch hosts off to reduce energy
consumption) and consolidating the save loads of running
server.

In [5], the authors proposed a new algorithm called CUBE-
FIT, which can use a fewer number of server to handle the
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workloads. Also, the algorithm can handle the system when
multiple server failures while reducing the cost and ensuring
that no server becomes overloaded.

Recently, optimizing power cost (instead of consumption)
has become the focus of many interesting works. Some of
these works have utilized the server consolidation technique in
order to achieve their goals. In general, the revenue maximiza-
tion problem does not appear to have been studied extensively
before. Below, we discuss the most relevant papers to our
work.

Electricity prices in the wholesale market vary a lot from
time to time and from region to region. This means that
different DC will have different costs to do the same job.
The same thing applies to the same DC doing the same job
at different times. Accordingly, the authors of [6] designed
a DC load placement strategy to optimize the power cost by
employing the DC that is located at cheap price regions within
an “acceptable” distance from the client.

In [7], the authors proposed a technique for the conservation
of energy in a heterogeneous cluster of workstations. The
technique minimizes the power consumption by turning cluster
nodes on to handle the workload efficiently and switching the
idle node off to save power under lighter load. They proposed
an algorithm that runs on a master node to monitor the load
on resources (disk storage, CPU and network interface) and
makes decisions about switching nodes on/off to minimize
the power consumption while taking into account SLA and
QoS. The algorithm runs at two levels: (1) at the operating
system level for cluster cycle servers and (2) at the application
level for a cluster-based, locality conscious network server.
The proposed approach can be applied to multi-application
mixed-workload environments with fixed SLA.

In [8], the authors proposed a power consolidation approach
for VM placement in virtualized heterogeneous computing
environments by taking the advantage of min-max and shares
parameters of VM. The techniques allow the DC to allocate
resources in order to run heterogeneous applications based on
available resources, power costs, and application utilities.

In [9], the authors investigated and formulated problem for
poweraware application placement in the environment with
heterogeneous virtualized server clusters by taking into ac-
count the migration and power costs. They divided the problem
into two parts. In the first part, they presented multiple ways to
capture the cost-aware application placement problem, while,
in the second part, they presented the pMapper architecture
and placement algorithm to solve one practical formulation of
the problem, which is to minimize power consumption and
maximize performance.

Recent studied focused on the dynamic voltage/frequency
scaling for reducing the power consumption in clusters and
DC. An interesting work was introduced in [10] to provide
a theoretical queuing model to predict the optimal power
allocation in virtualized heterogeneous server farm while min-
imizing the mean response time. The idea is to find the specific
relationship between frequency and power for optimal power
allocation at the level of server farms.

The CPU, disk storage and network interface are the main
components in the DC that consume the power. In comparison
to other resources in the DC, CPU consume large amounts
of energy. For this reason, many recent studies [10], [11]
focused on managing its power consumption and efficient
usage. Some of these studies showed that an idle server
consumes approximately 70% of the power consumed when
the server running at full speed. So, they proposed many
techniques, such as Dynamic Voltage and Frequency Scaling
(DVFS) on CPU, for switching the idle servers off in order to
reduce power consumption.

The literature related to DC demand response (DR) is of
concern to diverse groups in many areas. With the increasing
VM density in cloud DC, it is becoming more difficult to
manage the physical resources. In [12], the authors designed
and evaluated revenue driven dynamic resource allocation to
achieve the objective of maximizing SLA-constrained revenue.
The authors integrated the performance models with a hill-
climbing algorithm to achieve the objective.

At present, many research efforts have been devoted to
increasing efficiency of DC by reducing power consumption
and carbon dioxide emissions. The goal of these efforts is
to efficiently utilize the available resources and to reduce
energy consumption and thermal cooling costs. In [13], the
authors proposed an effective dynamic scheduler to maximize
the application throughput and minimize the computing-plus-
communication energy consumption. The overall goal is to
reduce the energy consumption while guaranteeing high QoS
in cloud DC.

CSP face the major challenge of the power demand in
DC on a more scalable curve because the growing popularity
of Cloud applications. To minimize the power consumption
and to reduce economical and environmental impact, it is
important to understand the relationship between power, DVFS
and consolidation. In [14], the authors proposed a DVFS policy
that reduces power consumption while preventing performance
degradation, and a DVFS-aware consolidation policy that
optimizes consumption. Because the CSP are bound to strict
SLA conditions, the authors took into account the DVFS
configuration that would be necessary to maintain QoS. In
[15], the authors developed framework to address frequency
regulation by controlling facility energy consumption via bat-
tery charging/discharging with no performance impact on the
workloads.

Another study [16] gave attention to designing hardware
and algorithms that can adapt energy usage by focusing on
speed-scaling and take into consideration the power-capping.
In [16], the authors proposed a dynamic server power capping
technique to manage and focus on how a DC should respond
to the energy price in order to reduce its energy bill while
maintaining the desired QoS. Also, the authors constructed and
solved an optimization problem With the goal of optimizing
the average power consumption and regulation quantity in
order to minimize the cost of energy.

Recently, the DR programs have been the focus of many
researchers to significantly reduce peak demands and allow
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for easier integration of renewable energy into the grid. One
field of DR has become increasingly important with increasing
energy consumption is the coincident peak pricing programs.
In [17], the authors developed two algorithms for the DC
that participate in DR programs by combining the workload
shifting of interactive/batch workload and the use of local
power generation in order to avoid coincident peaks and, thus,
reducing the energy expenditure. Then, the peak power usage
fee can be effectively mitigated. Thus, participating in DR
programs can reduce electricity cost significantly; however,
this comes at the expense of server availability.

The workload scheduling for taming DC peak power de-
mand charge has been studied in [18]. The authors designed
a hierarchical framework for optimizing DC electric utility
bills via both partial execution and workload deferring mech-
anisms, where the workload deferring can be adopted if the
workload is latency-tolerable, e.g., for batch workload. Also,
the authors have investigated server resource management
techniques (e.g., switching off idle servers) to modulate energy
demand. There are clearly many important research questions
to address, compared with the previously mentioned related
works. It is clear that many significant challenges are yet to
be addressed.

The importance of the proposed work comes mainly from
addressing the revenue maximization problem by employing
server consolidation in DC. Our model assigns incoming
tasks to the minimum number of active servers in the DC
and turns off unused servers while taking into account the
trade-off between maximizing the revenue and minimizing
the operational cost of the DC. This model is extending the
formulation of the DC expansion problem by using a mixed
integer linear programming approach.

III. SYSTEM MODEL

In this section, we extend our previous work [1], [2] by
employing the server consolidation technique in order to
face the increasing demands and optimize the revenue. We
formulate this optimization problem using mixed integer linear
programming (MILP).

Following the notation of [1], [2], we denote the set of users
locations by U and the set of DC locations by S (including
current locations as well as candidate locations on which new
DC can be built). To denote whether a DC is built on location
s or not, we use the set of binary variables, X = {xs|s ∈ S}.
We use Lh

u to represent the total number of service requests
(SR) originating from users on location u at time h. We also
use λhs,u to represent the fraction of Lh

u that is serviced by the
DC s. Finally, we define λ = {λhs,u|s ∈ S, u ∈ U, h ∈ H}
and enforce the following constraint in order to ensure that no
request is denied.∑

s∈S
λhs,u = Lh

u, ∀h ∈ H (1)

The ability of a DC s to handle SR from users on location
u at time h is represented by the binary variable yhs,u. Let

Y = {yhs,u|s ∈ S, u ∈ U, h ∈ H}. The following constraint
ensures that a DC that is not built yet cannot handle any SR.

yhs,u ≤ xs, ∀s ∈ S, u ∈ U, h ∈ H (2)

We also need to ensure that SR are not routed to DC that
cannot handle them.

0 ≤ λhs,u ≤ yhs,uLh
u, ∀s ∈ S, u ∈ U, h ∈ H (3)

If Rs is the set of servers in DC s, then, the following con-
straint defines a SR distribution policy to assign SR received
by the DC to its servers.∑

r∈Rs

ψh,r
s,u = λhs,u ∀s ∈ S, h ∈ H (4)

As in [19], we define another binary variable (Ih,rs ) to
represent the operating status of a server r at DC s during
time slot h. Let I = {Ih,rs |s ∈ S, r ∈ Rs, h ∈ H}. Thus, we
have the following constraint.

Ih,rs ≤ xs, ∀s ∈ S, r ∈ Rs, h ∈ H (5)

In order to calculate the power consumption of a server’s
startup/shutdown process, we use the model of [19]. Let
ESDh,r

s and ESUh,r
s be the power consumption of server r

during startup and shutdown delays, respectively. The startup
variable, UPh,r

s , for server r is set to 1 once server r is invoked
at time slot h in DC s; otherwise, it is set to 0. We also
define a shutdown variable DNh,r

s , which will be set to 1
when server r is indicated to shutdown at time slot h in DC
s and 0 otherwise.

To calculate the power consumption of each server r at DC
s at time slot h, we employ [20]’s model.

Ph,r
s =

[
Ih,rs (Pidle + (Eusage − 1)Ppeak)

+ Ih,rs (Ppeak − Pidle)γ
h
s + xsε

]
+ ESUh,r

s × UPh,r
s + ESDh,r

s ×DNh,r
s (6)

γhs =

∑
u∈U ψ

h,r
s,u

µr
s

× Ih,rs (7)

∑
r∈R

Ph,r
s ≤ Ph,max

s , ∀s ∈ S, h ∈ H (8)

2Ds,uy
h
s,u ≤ Dmax, ∀s ∈ S, u ∈ U, h ∈ H (9)

γt,hs ≤ γmax, ∀s ∈ S, h ∈ H (10)

As in [19]. We define the Constraints 11–22. To represent
the initial conditions for each server when it has already been
started, during waking up process, or shutdown, Constraints
11-14 are used. For “startup delay” periods, servers are as-
sumed to be in the OFF status. When a server is initially
at waking up process, its status is turned to ON status for
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“minimum ON” time. A server should stay in the OFF status
for “shutdown delay” plus “minimum OFF” time when it is
initially at shutdown status. If the server is initially ON, the
following holds.

Ih,rs = 1, h ∈ [1,MUr
s − TUOr

s ] (11)

If the server is initially during WAKEUP process, the follow-
ing holds.

Ih,rs = 0, h ∈ [1, DSUr
s − TWOr

s ] (12)

Ih,rs = 1, h ∈ [DSUr
s −TWOr

s+1, DSUr
s −TWOr

s+MUr
s ]

(13)
If the server is initially OFF, the following holds.

Ih,rs = 0, h ∈ [1,MDr
s +DSDr

s − TDOr
s ] (14)

for h ≤ H −DSUr
s −MUr

s + 1

h+DSUr
s+MUr

s−1∑
n=h+DSUr

s

In,rs ≥MUr
s ×DNh,r

s

Constraints 15-17 represents the “minimum ON” time re-
quirements for each server in each period. Once a server is
invoked to wake up, it will stay in the OFF status for “startup
delay” periods, and then it will be ON for at least “minimum
ON” time.

h+DSUr
s−1∑

n=h

In,rs ≤ DSUr
s × (1− UPh,r

s ) (15)

for H −DSUr
s −MUr

s + 2 ≤ h ≤ H −DSUr
s

H∑
n=h+DSUr

s

In,rs ≥ (H − h−DSUr
s + 1)(UPh,r

s )

h+DSUr
s−1∑

n=h

In,rs ≤ (DSUr
s )(1− UPh,r

s ) (16)

for H −DSUr
s + 1 ≤ h ≤ H

H∑
n=h

In,rs ≤ (H − h+ 1)(1− UPh,r
s ) (17)

for H ≤ H −MDr
s −DSDr

s + 1

Similarly, constraints 18-19 enforce the “minimum OFF” time
requirements for each server in each period. Once a server is
instructed to shut down, it will turn to OFF immediately and
stay in the OFF status for “shutdown delay” plus “minimum
OFF” time.

h+MDr
s+DSDr

s−1∑
n=h

In,rs ≤ (MDr
s +DSDr

s)(1−DNh,r
s ) (18)

for H −MDr
s −DSDr

s + 2 ≤ h ≤ H

H∑
n=h

In,rs ≤ (H − h+ 1)(1−DNh,r
s ) (19)

Finally, constraint 20 enforces the relationship between a
server’s startup/shutdown indicator and ON/OFF status. Here,
the startup variable UPh,r

s will be equal to 1 once the server
is invoked to start up at period h; otherwise, it will be equal
to 0. Similarly, the shutdown variable DNh,r

s will be equal
to 1 once server is indicated to shutdown at period h and 0
otherwise. Both startup and shutdown indicators are binary
variables.

Ih,rs − Ih−1,rs = UPh,r
s −DSUr

s −DNh,r
s (20)

In order to reduce the number of binary variables and improve
the model efficiency, UPh,r

s and DNh,r
s are modeled as

continuous variables by introducing constraints 21-22.

UPh,r
s −DSDr

s ≤ 1− Ih−1,rs (21)

DNh,r
s ≤ Ih−1,rs (22)

The objective function is as follows.

Maximizex,m RV(T )− (OPEX(T ) + CAPEX(T ))

Subject to Constraints 1− 22.

The overall cost of the DC can be divided into operational cost
(OPEX) and capital cost (CAPEX). More formally, CAPEX
for a certain year t can be expressed using the following
equation.

CAPEX(t) =
∑
s∈S

(xt−1s − xts)BCt
s + (mt−1

s −mt
s)SCt

s,

where BCt
s represent the cost of building a DC s in year t

and SCt,s represent the cost of buying a server for the DC s
in year t.

OPEX for a certain year t can be expressed as follows [21].

OPEX(t) =
∑
s∈S

∑
h∈H

(θtsP
t,h
s +δts(ρs+1)P t,h

s +
∑
u∈U

(λt,hs,uσ
t
s,u)),

where δts is the carbon tax in location s in year t, ρs is the
power transmission loss rate location s, σt

s,u is the cost of the
bandwidth between user location u and candidate location s
and θts is the price of electricity in candidate location s taken
during three different time-of-use price periods: off-peak, mid-
peak and on-peak.

Now, the revenue of year t is computed using the following
equation [22]: RV(t) = ((1 − p(x))αtλt,hs,u − p(x)βt), where
p(x) is the probability that the waiting time for a service
request exceeds the SLA-deadline, αt is the service fee that the
DC charges the costumers for handling a single service request
and βt is the penalty that the DC must pay for every service
request it cannot handle (thus, causing an SLA violation).
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A. Renewable Energy

The model discussed so far does not explicitly account for
renewable energy, which is one of the biggest concerns related
to DC and their effect on the surrounding environment. To
address this issue, we reformulate Equation 6 as follows [22].

Ph,r
s =

[[
[Ih,rs (Pidle + (Eusage − 1)Ppeak)

+ Ih,rs (Ppeak − Pidle)γ
h
s + xsε]

+ ESUh,r
s × UPh,r

s + ESDh,r
s ×DNh,r

s

]
− xsGh

s

]+

,

where [x]+ = max{x, 0} and Gt,h
s is the amount of renewable

power generated in location s during hour h. The details for
the renewable power inclusion is available at [1], [22].

IV. EXPERIMENTS AND RESULTS

Now we will discuss our model implementation and the
simulation obtained results.

In our experiment, we will compare this model by using
Server Consolidation and previous model in [2]. Also, we set
all input variable the same as in [1]. However, we do consider a
more realistic case where the number of candidate DC, number
of server and initial traffic load as shown in Table I. For the
sake of simplicity, we consider the number of servers: 25 OR
50 Servers for each DC. Also, for the traffic load, we choose
the total number of SR incoming from all user locations to be
between 2.5 and 10 thousand hits/hour. We set the remaining
variables as we used in the previous model [1] to compare
between the revenue when we apply the server Consolidation
and without server Consolidation.

Let’s start by experiment 1. In Table I, the initial traffic
load is 10000 requests/hour, and the number of server in each
candidate DC is 25 servers. From Figure 1, in first year, we see
the revenue in server consolidation is positive comparing with
another model. The reason that workload less than the peak
load and some of servers are consuming power during idle
period. This will cause a decrease in revenue, with inflation in
the traffic load after 10 years and the workload reach to peak.
In this case, all server will be in the peak period and no need
to server consolidation in this case, as we see in Figure 1, at
year 10, the revenue from the two models are the same.

From Figure 1-6, to analyze the performance improvement
in our model, we compare between a model with server
consolidation and a model without server consolidation (we
assume all server are staying “ON”). We conduct different
experiments with different workloads and different numbers
of servers.

As we see, the server consolidation returns a better revenue
compared with the other model. The difference in revenue
between the two models depends on the number of servers
in each DC and the traffic load. In each experiment the
server consolidation return positive revenue compared with
other model that return negative revenue in some case and

the reason for that in some case all server will be “ON”
and there is no traffic load. In this case the server consume
power without any processing. To handle this problem, our
proposed model reduces the total electricity consumption in
each DC and increases the revenue by considering the severe
consideration.

In each experiment there are varying cost reductions. As we
see, the server consolidation model is more effective than other
model in reducing the electricity special when the number
of servers is large in DC and the traffic load is less than
the number of servers. This will increase the revenue for
cloud provider, and the server consolidation model will help
to handle request by turning “ON” the require servers and
make other servers “OFF”. This will save more power when
the server idle.

Fig. 1. Experiment Number One

Fig. 2. Experiment Number Two

Fig. 3. Experiment Number Three

Now, let us present and discuss the results of the six
experiments we conduct. The objective of six experiments are
to study how the server consolidation can handle the increasing
traffic load and increase the profit for cloud provider. We run
our model for 10 years on 7 DC locations, and we use different
number of servers and incoming request. in our model we
assume that all DC already built and have some servers in it.
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Fig. 4. Experiment Number Four

Fig. 5. Experiment Number Five

Fig. 6. Experiment Number Six

Since the servers are homogeneous and the maximum number
of servers to be placed in a single DC for each experiment
shown in Table I.

In the our experiment, we study the effect of using server
consolidation and how we can increase the profit. From
Figures 1-6, it can be seen that using server consolidation with
different number of servers and traffic load for different times
of periods generates better annual profits than using previous
model in [1]. Moreover, increasing traffic load with using
server consolidation also has even more positive effect on the
annual profits compare with other model. Finally, increasing
number of servers and the number of traffic load whit both
settings (with consolidation and without consolidation) causes

TABLE I
EXPERIMENT SETTINGS

candidate DC Server Initial traffic load
experiment 1 7 25 10000
experiment 2 7 50 10000
experiment 3 7 25 5000
experiment 4 7 50 5000
experiment 5 7 25 250
experiment 6 7 50 250

a big improvement on the annual profits.

V. CONCLUSION

The increasing demands for cloud services and the efforts
of cloud service providers to fulfill this demands while guar-
anteeing the maximum revenue. In this paper, we proposed a
holistic view in how to achieve these two objectives through
a formulation of the problem taking in the account the need
for DC expansion while reducing the total operational cost
through servers consolidation.
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