
The Art and Practice of Data Science Pipelines
A Comprehensive Study of Data Science Pipelines In Theory, In-The-Small, and In-The-Large

Sumon Biswas
Iowa State University

Ames, IA, USA
sumon@iastate.edu

Mohammad Wardat
Iowa State University

Ames, IA, USA
wardat@iastate.edu

Hridesh Rajan
Iowa State University

Ames, IA, USA
hridesh@iastate.edu

ABSTRACT
Increasingly larger number of software systems today are including
data science components for descriptive, predictive, and prescriptive
analytics. The collection of data science stages from acquisition, to
cleaning/curation, to modeling, and so on are referred to as data
science pipelines. To facilitate research and practice on data science
pipelines, it is essential to understand their nature. What are the
typical stages of a data science pipeline? How are they connected?
Do the pipelines differ in the theoretical representations and that in
the practice? Today we do not fully understand these architectural
characteristics of data science pipelines. In this work, we present a
three-pronged comprehensive study to answer this for the state-
of-the-art, data science in-the-small, and data science in-the-large.
Our study analyzes three datasets: a collection of 71 proposals for
data science pipelines and related concepts in theory, a collection
of over 105 implementations of curated data science pipelines from
Kaggle competitions to understand data science in-the-small, and
a collection of 21 mature data science projects from GitHub to
understand data science in-the-large. Our study has led to three
representations of data science pipelines that capture the essence
of our subjects in theory, in-the-small, and in-the-large.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; • Computing methodologies→Machine learning.

KEYWORDS
data science pipelines, data science processes, descriptive, predictive
ACM Reference Format:
Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art
and Practice of Data Science Pipelines: A Comprehensive Study of Data
Science Pipelines In Theory, In-The-Small, and In-The-Large. In 44th Inter-
national Conference on Software Engineering (ICSE ’22), May 21–29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3510003.3510057

1 INTRODUCTION
Data science processes, also called data science stages as in stages of
a pipeline, for descriptive, predictive, and prescriptive analytics are
becoming integral components of many software systems today.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510057

The data science stages are organized into a data science pipeline,
where data might flow from one stage in the pipeline to the next.
These data science stages generally perform different tasks such
as data acquisition, data preparation, storage, feature engineering,
modeling, training, evaluation of the machine learning model, etc.
In order to design and build software systems with data science
stages effectively, we must understand the structure of the data
science pipelines. Previous work has shown that understanding the
structure and patterns used in existing systems and literature can
help build better systems [34, 107]. In this work, we have taken the
first step to understand the structure and patterns of DS pipelines.

Fortunately, we have a number of instances in both the state-of-
the-art and practice to draw observations. In the literature, there
have been a number of proposals to organize data science pipelines.
We call such proposals DS Pipelines in theory. Another source of
information is Kaggle, a widely known platform for data scientists
to host and participate in DS competitions, share datasets, machine
learning models, and code. Kaggle contains a large number of data
science pipelines, but these pipelines are typically developed by a
single data scientist as small standalone programs. We call such
instances DS Pipelines in-the-small. The third source of DS pipelines
are mature data science projects on GitHub developed by teams,
suitable for reuse. We call such instances DS Pipelines in-the-large.

This work presents a study of DS pipelines in theory, in-the-
small, and in-the-large. We studied 71 different proposals for DS
pipelines and related concepts from the literature. We also studied
105 instances of DS pipelines from Kaggle. Finally, we studied 21
matured open-source data science projects from GitHub. For both
Kaggle and GitHub, we selected projects that make use of Python to
ease comparative analysis. In each setting, we answer the following
overarching questions.
(1) Representative pipeline: What are the stages in DS pipeline

and how frequently they appear?
(2) Organization: How are the pipeline stages organized?
(3) Characteristics: What are the characteristics of the pipelines

in a setting and how does that compare with the others?
This work attempts to inform the terminology and practice for

designing DS pipeline. We found that DS pipelines differ signifi-
cantly in terms of detailed structures and patterns among theory,
in-the-small, and in-the-large. Specifically, a number of stages are
absent in-the-small, and the pipelines have a more linear structure
with an emphasis on data exploration. Out of the eleven stages
seen in theory, only six stages are present in pipeline in-the-small,
namely data collection, data preparation, modeling, training, eval-
uation, and prediction. In addition, pipelines in-the-small do not
have clear separation between stages which makes the maintenance
harder. On the other hand, the DS pipelines in-the-large have a

ar
X

iv
:2

11
2.

01
59

0v
3

 [
cs

.S
E

]
 1

4
Fe

b
20

22

https://doi.org/10.1145/3510003.3510057
https://doi.org/10.1145/3510003.3510057
https://doi.org/10.1145/3510003.3510057

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

more complex structure with feedback loops and sub-pipelines.
We identified different pipeline patterns followed in specific phase
(development/post-development) of the large DS projects. The ab-
straction of stages are stricter in-the-large having both loosely- and
tightly-coupled structure.

Our investigation also suggest that DS pipeline is a well used
software architecture but often built in ad hoc manner. We demon-
strated the importance of standardization and analysis framework
for DS pipeline following the traditional software engineering re-
search on software architecture and design patterns [70, 84, 107].
We contributed three representations of DS pipelines that capture
the essence of our subjects in theory, in-the-small, and in-the-large
that would facilitate building new DS systems. We anticipate our
results to inform design decisions made by the pipeline architects,
practitioners, and software engineering teams. Our results will also
help the DS researchers and developers to identify whether the
pipeline is missing any important stage or feedback loops (e.g.,
storage and evaluation are missed in many pipelines).

The rest of this paper is organized as follows: in section §2, we
present our study of DS pipelines in theory. Section §3 describes
our study of DS pipelines in-the-small. In section §4, we describe
our study of DS pipelines in-the-large. Section §5 discusses the
implications, section §6 describes the threats to the validity, section
§7 describes related work, and section §8 concludes.

2 DS PIPELINE IN THEORY
Data Science. Data Science (DS) is a broad area that brings together
computational understanding, inferential thinking, and the knowl-
edge of the application area. Wing [129] argues that DS studies how
to extract value out of data. However, the value of data and extrac-
tion process depends on the application and context. DS includes a
broad set of traditional disciplines such as data management, data
infrastructure building, data-intensive algorithm development, AI
(machine learning and deep learning), etc., that covers both the
fundamental and practical perspectives from computer science,
mathematics, statistics, and domain-specific knowledge [13, 116].
DS also incorporates the business, organization, policy and privacy
issues of data and data-related processes. Any DS project involves
three main stages: data collection and preparation, analysis and
modeling, and finally deployment [128]. DS is also more than statis-
tics or data mining since it incorporates understanding of data and
its pattern, developing important questions and answering them,
and communicating results [116].

Data Science Pipeline. The term pipeline was introduced by
Garlan with box-and-line diagrams and explanatory prose that as-
sist software developers to design and describe complex systems so
that the software becomes intelligible [37]. Shaw and Garlan have
provided the pipes-and-filter design pattern that involves stages
with processing units (filters) and ordered connections (pipes) [107].
They also argued that pipeline gives proper semantics and vo-
cabulary which helps to describe the concerns, constraints, re-
lationship between the sub-systems, and overall computational
paradigm [37, 107]. By data science pipeline (DS pipeline), we are
referring to a series of processing stages that interact with data,
usually acquisition, management, analysis, and reasoning [77, 79].
The sequential DS stages from acquisition, to cleaning/curation, to

modeling, and so on are referred to as data science pipeline. A DS
pipeline may consist of several stages and connections between
them. The stages are defined to perform particular tasks and con-
nected to other stage(s) with input-output relations [6]. However,
the definitions of the stages are not consistent across studies in
the literature. The terminology vary depending on the application
context and focus.

Different study in the literature presented DS pipeline based
on their context and desiderata. No study has been conducted to
unify the notions DS pipeline and collect the concepts [103]. While
designing a new DS pipeline [130], dividing roles in DS teams [65],
defining software process in data-intensive setting [123], identi-
fying best practices in AI and modularizing DS components [6],
it is important to understand the current state of the DS pipeline,
its variations and different stages. To understand the DS pipelines
and compare them, we collected the available pipelines from the
literature and conducted an empirical study to unify the stages with
their subtasks. Then we created a representative DS pipeline with
the definitions of the stages. Next, we present the methodology and
results of our analysis of DS pipelines in theory.

2.1 Methodology
2.1.1 Collecting Data Science Pipelines. We searched for the stud-
ies published in the literature and popular press that describes DS
pipelines. We considered the studies that described both end-to-end
DS pipeline or a partial DS pipeline specific to a context. First, we
searched for peer-reviewed papers published in the last decade i.e.,
from 2010 to 2020. We searched the terms “data science pipeline”,
“machine learning pipeline”, “big data lifecycle”, “deep learning work-
flow”, and the permutation of these keywords in IEEE Xplore, ACM
Digital Library and Google Scholar. From a large pool, we selected
1,566 papers that fall broadly in the area of computer science, soft-
ware engineering and data science. Then we analyzed each article
in this pool to select the ones that propose or describe a DS pipeline.
We found many papers in this collection use the terms (e.g., ML
lifecycle), but do not contain a DS pipeline. We selected the ones
that contain DS pipeline and extracted the pipelines (screenshot/de-
scription) as evidence from the article. The extracted raw pipelines
are available in the artifact accompanied by this paper [7]. Thus,
we found 46 DS pipelines that were published in the last decade.

Besides peer-reviewed papers, by searching the keywords on
web, we collected the DS pipelines from US patent, industry blogs
(e.g., Microsoft, GoogleCloud, IBM blogs), and popular press pub-
lished between 2010 and 2020. After manual inspection, we found
25 DS pipelines from this grey literature. Thus, we collected 71
subjects (46 from peer reviewed articles and 25 from grey litera-
ture) that contain DS pipeline. We used an open-coding method to
analyze these DS pipelines in theory [7] .

2.1.2 Labeling Data Science Pipelines. In the collected references,
DS pipeline is defined with a set of stages (data acquisition, data
preparation, modeling, etc.) and connections among them. Each
stage in the pipeline is defined for performing a specific task and
connected to other stages. However, not all the studies depict DS
pipelines with the same set of stages and connections. The studies
use different terminologies for defining the stages depending on the
context. To be able to compare the pipelines, we had to understand

The Art and Practice of Data Science Pipelines ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

End

Training Independent Labeling

Train the raters

Label one subject

Discussion meeting

Reconciling
disagreements

Finished
training

Label next pipeline

Perfect
agreement

Independent
re-labeling

No

Yes
Finished

Yes

No

Reconcile all
disagreements

No Yes

Figure 1: Labeling method for DS pipelines in theory

the definitions and transform them into a canonical form. For a
given DS pipeline, identifying their stages and mapping them to a
canonical form is often challenging. The sub-tasks, overall goal of
the project, utilities affect the understanding of the pipeline stages.
To counter these challenges, we used an open-coding method to
label the stages of the pipelines.

Two authors labeled the collected DS pipelines into different
criteria. Each author read the article, understood the pipeline, iden-
tified the stages, and labeled them. In each iteration, the raters
labeled 10% of the subjects (7-8 pipelines). The first 8 subjects were
used for training and forming the initial labels. After each iteration,
we calculated the Cohen’s Kappa coefficient [121], identified the
mismatches, and resolved them in the presence of a moderator, who
is another author. Thus, we found the representative DS pipeline
after rigorous discussions among the raters and the moderator. The
methodology of this open-coding procedure is shown in Figure 1.
The entire labeling process was divided into two phases: 1) training,
and 2) independent labeling.

Training: The two raters were trained on the goal of this project
and their roles. We randomly selected eight subjects for training.
First, the raters and the moderator had discussions on three sub-
jects and identified the stages in their DS pipeline. Thus, we formed
the commonly occurred stages and their definitions, which were
updated through the entire labeling and reconciliation process later.
After the initial discussion and training, the raters were given the
already created definitions of the stages and one pipeline from the
remaining five for training. The raters labeled this pipeline indepen-
dently. After labeling the pipeline, we calculated the agreement and
conducted a discussion session among the raters and the moderator.
In this session, we reconciled the disagreements and updated the
labels with the definitions. We continued the training session until
we got perfect agreement independently. The inter-rater agreement
was calculated using Cohen’s Kappa coefficient [121]. A higher ^
([0, 1]) indicates a better agreement. The interpretation of of ^ is
shown in Figure 2a. In the discussion meetings, the raters discussed
each label (both agreed and disagreed ones) with the other rater and
moderator, argued for the disagreed ones and reconciled them. In
this way, we came up with most of the stages and a representative
terminology for each stage including the sub-tasks.

Independent labeling: After completing the training session,
the rest of the subjects were labeled independently by the raters.
The raters labeled the remaining 63 labels: 7 subjects (10%) in each

Range (^) Agreement level
0.00 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 1.00 Perfect agreement

(a) Interpretation of Kappa (^)

Iteration # ^ Iteration # ^

1 0.67 6 0.91
2 0.74 7 0.87
3 0.82 8 0.90
4 0.84 9 0.94
5 0.84 10 0.91

(b) Agreement in different stages
Figure 2: Labeling agreement calculation

of the 9 iterations. The distribution of ^ after each independent
labeling iteration is shown in Figure 2b. In each iteration, first, the
raters had the labeling session, and then the raters and moderator
had the reconciliation session.

Labeling. The raters labeled separately so that their labels were
private, and they did not discuss while labeling. The raters identi-
fied the stages and connections between them, and finally labeled
whether the DS pipeline involves processes related to cyber, physi-
cal or human component in it. In independent labeling, we found
almost perfect agreement (^ = 0.83) on average. Even after high
agreement, there were very few disagreements in the labels, which
were reconciled after each iteration.

Reconciling. Reconciliation happened for each label for the sub-
ject studies in the training session, and the disagreed labels for the
studies in independent labeling session. In training session, the
reconciliation was done in discussion meetings among the raters
and the moderator, whereas for the independent labels, reconcilia-
tion was done by the moderator after separate meetings with the
two raters. For reconciliation, the raters described their arguments
for the mislabeled stages. For a few cases, we had straightforward
solution to go for one label. For others, both the raters had good
arguments for their labels, and we had to decide on that label by
updating the stages in the definition of the pipeline. All the labeled
pipelines from the subjects are shared in our paper artifact [7].

Furthermore, after finishing labeling the pipelines stages, we
also classified the subject references into four classes based on the
overall purpose of the article. First, after a few discussions, the
raters and moderator came up with the classes. Then, the raters
classified each pipeline into one class. We found disagreements in 6
out of 71 references, which the moderator reconciled with separate
meetings with the two raters. Based on our labeling, the literature
that we collected are divided into four classes: describe or propose
DS pipeline, survey or review, DS optimization, and introduce new
method or application. Next, we are going to discuss the result of
analyzing the DS pipelines in theory.

2.2 Representative Pipeline in Theory
The labeled pipelines with their stages are visually illustrated in
the artifact Table 3. We found that pipelines in theory can be both
software architecture and team processes unlike pipelines in-the-
small and in-the-large. Through the labeling process, we separated
those team processes (25 out of 71), which are discussed in §2.4.

RQ1a: What is a representative definition of the DS pipe-
line in theory? From the empirical study, we created a represen-
tative rendition of DS pipeline with 3 layers, 11 stages and possible
connections between stages as shown in Figure 3. Each shaded box
represents a DS stage that performs certain sub-tasks (listed under
the box). In the preprocessing layer, the stages are data acquisition,
preparation, and storage. The preprocessing stage study design only

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

Data
preparation

Feature
engineering CommunicationInterpretation

Post-processing LayerModel Building Layer

Data
acquisition Storage Modeling Training Evaluation Prediction

Load
Collect
Obtain
Capture
Survey

Explore
Wrangle
Clean
Filter
Organize

Preserve
Archive
Warehouse
Log
Recycle

Feature
 - select
 - construct
Label
Annotate

Classify
Cluster
Mine
Analyze
Process

Tune
Optimize

Validate
Test
Verify
Review

Discover
Derive
Determine

Transform
Visualize
Render
Translate
Explain

Transfer
Share
Distribute
Transmit
Publish

Install
Exploit
Serve
Monitor

Deployment

Study design Pre-processing Layer

Figure 3: Concepts in a data science pipeline. The sub-tasks are listed below each stage. The stages are connected with feedback
loops denoted with arrows. Solid arrows are always present in the lifecycle, while the dashed arrows are optional. Distant
feedback loops (e.g., from deployment to data acquisition) are also possible through intermediate stage(s).

Stages of Data Science Pipeline
Data Acquisition (ACQ): In the beginning of DS pipeline, data are collected
from appropriate sources. Data can be acquired manually or automatically. Data
acquisition also involves understanding the nature of the data, collecting relevant
data, and integrating available datasets.
Data Preparation (PRP): Data are generally acquired in a raw format that needs
certain preprocessing steps. This involves exploration and filtering, which helps
identify the correct data for further processing. Well prepared data reduces the
time required for data analysis and contributes to the success of the DS pipeline.
Storage (STR): It is important to find an appropriate hardware-software combina-
tion to preserve data so that it can be processed efficiently. For example, Miao et al.
used graph database system Neo4j [75] to build a collaborative analysis pipeline
[72], since Neo4J supports querying graph data properties.
Feature Engineering (FTR): The entire dataset might not contribute equally to
decision making. In this stage, appropriate features that are useful to build the
model are identified or constructed. Features that are not readily available in the
dataset, require engineering to create them from raw data.
Modeling (MDL):When data are preprocessed and features are extracted, a model
is built to analyze the data. Model building includesmodel planning, model selection,
mining and deriving important properties of data. Appropriate data processing
strategies and algorithms are selected to create a good model.
Training (TRN): For a specific model, we need to train the model with available
labeled data. By each training iteration, we optimize the model and try to make it
better. The quality of the training dataset contributes to the training accuracy of
the model.
Evaluation (EVL): After training the model, it is tested with a new dataset which
has not been used as training data. Also, the model can be evaluated in real-life
scenarios and compared with other competing models. Existing metrics are used
or new metrics are created to evaluate the model.
Prediction (PRD): The success of the model depends on how good a model can
predict in an unknown setup. After a satisfactory evaluation, we employ the model
to solve the problem and see how it works. There are many prediction metrics such
as classification accuracy, log-loss, F1-score, to measure the success of the model.
Interpretation (INT): The prediction result might not be enough to make a deci-
sion. We often need a transformation of the prediction result and post-processing
to translate predictions into knowledge. For example, only numerical results do
not help much but a good visualization can help to make a decision.
Communication (CMN): Different components of the DS system might reside
in a distributed environment. So, we might need to communicate with the in-
volved parties (e.g., devices, persons, systems) to share and accumulate information.
Communication might take place in different geographical locations or the same.
Deployment (DPL): The built DS solution is installed in its problem domain to
serve the application. Over time, the performance of the model is monitored so that
the model can be improved to handle new situations. Deployment also includes
model maintenance and sending feedback to the model building layer.

Table 1: Description of the stages in DS pipeline

appeared in team process pipelines that comprise requirement for-
mulation, specification, and planning, which are often challenging
in data science. The algorithmic steps and data processing are done
in the model building layer.Modeling does not necessarily imply the
existence of an ML component, since DS can involve custom data
processing or statistical modeling. Post-processing layer includes
the tasks that take place after the results have been generated. The
DS pipeline stages are described in Table 1.

RQ1b: What are the frequent and rare stages of the DS
pipeline in theory? The frequency of stage can depend on the

Figure 4: Frequency of pipeline stages in theory

focus of the pipeline or its importance in certain context (ML, big-
data management). Among 46 DS pipelines (which are not team
processes), Figure 4 shows the number of times each stage appears.
A few pipelines present stages with broad terminology that fit mul-
tiple stage-definitions. In those cases, the pipelines were labeled
with the fitted stages and counted multiple times. Modeling, data
preparation, and feature engineering appear most frequently in the
literature. While modeling is present in 93% of the pipelines, other
model related stages (feature engineering, training, evaluation, pre-
diction) are not used consistently. Often training is not considered
as a separate stage and included inside themodeling stage. Similarly,
we found that evaluation and prediction are often not depicted as
separate stages. However, by separating the stages and modulariz-
ing the tasks, the DS process can be maintained better [6, 103]. The
pipeline created with the most number of stages (11) is provided
by Ashmore et al. [9]. On the other hand, about 15% of the pipelines
from the literature are created with a minimal number (3) of stages.
Among them, 80% are ML processes and falls in the category of
DS optimizations. We found that these pipelines are very specific
to particular applications, which include context-specific stages
like data sampling, querying, visualization, etc., but do not cover
most of the representative stages. A pipeline in theory may not
require all representative stages, since it can have novelty in certain
stages and exclude the others. However, the representative pipeline
provides common terminology and facilitate comparative analysis.

Finding 1: Post-processing layers are included infrequently (52%)
compared to pre-processing (96%) and model building (96%) layers
of pipelines in theory.

Clearly, preprocessing and model building layers are considered
in almost all of the studies. In most of the cases, the pipelines
do not consider the post-processing activities (interpretation, com-
munication, deployment). These pipelines often end with the pre-
dictive process and thus do not follow up with the later stages
which entails how the result is interpreted, communicated and de-
ployed to the external environment. Miao et al. argued that overall
lifecycle management tasks (e.g., model versioning, sharing) are
largely ignored for deep learning systems [73]. Previous studies

The Art and Practice of Data Science Pipelines ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

also showed that significant amount of cost and effort is spent in the
post-development phases in traditional software lifecycle [70, 90].
In data-intensive software, the maintenance cost can go even higher
with the high-interest technical debt in the pipeline [102]. Therefore,
post-processing stages should be incorporated for a better under-
standing of the impact of the proposed approach on maintenance
of the DS pipeline.

2.3 Organization of Pipeline Stages in Theory
RQ2: How are pipeline stages connected to each other? In Fig-
ure 3, for simplicity, we depicted the DS pipeline as a mostly linear
chain. However, our subject DS pipelines often have non-linear
behavior. In any stage, the system might have to return to the pre-
vious stage for refinement and upgrade, e.g., if a system faces a
real-world challenge in modeling, it has to update the algorithm
which might affect the data pre-processing and feature engineering
as well. Furthermore, the stages do not have strict boundaries in
the DS lifecycle. In Figure 3, two backward arrows, from feature
engineering and evaluation, indicate feedback to any of the previous
stages. Although in traditional software engineering processes (e.g.,
waterfall model, agile development, etc.), feedback loop is not un-
common, in DS lifecycle, there are multiple stakeholders andmodels
in a distributed environment which makes the feedback loops more
frequent and complex. Sculley et al. pointed that DS tasks such
as sampling, learning, hyperparameter choice, etc. are entangled
together so that Changing Anything Changes Everything (CACE
principle) [103], which in turn creates implicit feedback loops that
are not depicted in the pipelines [20, 35, 91, 120]. The feedback
loops inside any specific layer are more frequent than the feedback
loops from one layer to another. Also, a feedback loop to a distant
previous stage is expensive. For example, if we do data preparation
after evaluation then the intermediate stages also require updates.

2.4 Characteristics of the Pipelines in Theory
RQ3: What are the different types of pipelines available in
theory? The context and requirements of the project can influence
pipeline design and architecture [36]. Here, we present the types of
pipelines with different characteristics that are available in theory.
We classified each subject in our study into four classes based on the
overall goal of the article. The most of the pipelines in theory (39%)
are describing or proposing new pipelines to solve a new or existing
problem. About 31% of the pipelines are on reviewing or comparing
the existing pipelines. The third group of DS pipelines (14%) are
intended to optimize a certain part of the pipeline. For example, Van
Der Weide et al. proposes a pipeline for managing multiple versions
of pipelines and optimize performance [120]. Most of the pipelines
in this category are application specific and include very few stages
that are necessary for the optimization. Fourth, some research
introduce new application or method and present within the pipeline.
We observed that there is no standard methodology to develop
comparable and inter-operable DS pipelines. Using the labeling
methodology shown in Figure 1, we labeled each pipeline and found
three types of DS pipelines in the literature: 1) ML process, 2) big
data management process, and 3) team process.

ML process: 46% of all the pipelines we found in the literature
are describing machine learning processes. The recent advent of

artificial intelligence, supervised learning and deep learning has
led to more DS systems that involve ML components. The pipelines
in this category emphasize the algorithmic process, learning pat-
terns, and building predictive models. However, the post-processing
stages are rare in these type of pipelines. The ML pipelines are often
thought of as algorithmic process in the laboratory scenario. But as
mentioned in [9], incorporating the post-processing stages would
be desired to ensure safe real-world deployment of such pipelines.

Big data management: The references in this category present
DS pipelines that manage a large amount of data or describes a
framework (software-hardware infrastructure) for data processing
but do not contain machine learning components in the pipeline.
Processing large amount data often requires specific algorithms
and engineering methods for efficiency and further processing. We
found that 18% of all the subject studies fall in this category.

Team process: We also found some DS pipelines that are not
describing DS software architecture. These pipelines describe work-
flow of human activities that needs to be followed in a DS pipeline.
These studies present a high-level view for building DS component
in a team environment. The data science teams require specific
expertise and management to build successful DS pipelines [6, 65].
In this paper, in §3 and §4, we are only focusing on DS pipeline as
software architecture, and therefore, we did not compare the team
process pipelines in the rest of this section.

Finding 2: Most of the pipelines in-theory involve cyber and phys-
ical components, only a few with human processes in the loop.

We identified whether the pipelines involve cyber, physical or hu-
man process, using our labeling process described in section §2.1.2.
Cyber processes refer to activities that involve automated systems
and machinery computations. Since modern DS systems involves
large amount of data and requires extensive computation, all of
the pipelines include cyber component in it. Physical processes
include the activities which require real-world connections with the
system. For example, collecting data using mobile sensors or cam-
eras is a physical process. Although 23% of the big data pipelines
include physical processes, only 9% of the ML pipelines include
that in the pipeline. In many DS systems, developers or researchers
participate in the pipelines actively to make decisions that need
human interventions [116, 120]. For example, in many DS systems,
analytical model validation, troubleshooting, data interpretation is
necessary which requires human involvement. However, only 13%
of the pipelines acknowledged human involvement in the pipeline.

3 DS PIPELINE IN-THE-SMALL
Similar to the DS pipelines in large systems and frameworks, for
a very specific data science task (e.g., object recognition, weather
forecasting, etc.), programmers build pipeline. Different stages of
the program perform a specific sub-task and connect with the other
stages using data-flow or control-flow relations. In this section, we
described such DS pipelines in-the-small.

3.1 Methodology
We collected 105 DS programs from Kaggle competition notebooks
[53]. Kaggle is one of the most popular crowd-sourced platforms
for DS competitions, owned by Google. Besides participating in

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

1. Featured
2. Research
3. Recruitment
4. Masters
5. Analytics
6. Playground
7. Getting started

105 top-rated
DS programs

API:Stage
Dictionary

Parse and
extract APIs

Create
Pipeline of

Stages

Competitions

PRP PRDMDL TRNMDLPRPACQ

For each
competition, select
most voted solution

Filter out solutions
 - votes < 10
 - not end-to-end
 pipeline

Figure 5: The pipeline creation process for Kaggle programs

competitions, data scientists, researchers, developers collaborate to
learn and share DS knowledge in variety of domains. The users and
organizations can host a DS competition in Kaggle to solve real-
world problems. A competition is accompanied by a dataset and
prize money. Many Kaggle solutions have resulted in impactful DS
algorithms and research such as neural networks used by Hinton
and Dahl [23], improving the search for the Higgs Boson at CERN
[51], etc. We chose Kaggle solutions to analyze DS pipeline for three
reasons: 1) all programs perform a DS task and provide solution to
a well specified problem associated with a dataset, 2) solutions with
the highest number of votes are well accepted solutions for a specific
problem, and 3) the problems cover a wide range of domains.

There are 331 completed competitions in Kaggle to date. They
categorized the competitions into Featured, Research, Recruitment,
Masters, Analytics, Playground and Getting started. We collected
solutions of all the competitions from each category except Getting
started and Playground (these two categories are intended to serve
as DS tutorials and toy projects). First, we filtered the competitions
for which there are solutions available (many old competitions do
not contain any public solution). We found 138 such competitions.
For a given competition problem, we selected the most voted so-
lution which has at least 10 votes. Thus, we got 105 top-rated DS
solutions for analyzing pipelines in-the-small. This selection and
pipeline creation process is shown in Figure 5.

All of the DS programs are written in Python using ML libraries
like Keras, Scikit-learn, Tensorflow, etc. These packages provide
high-level Application Programming Interfaces (APIs) for perform-
ing a specific task on data or model. We parsed the programs into
Abstract Syntax Tree (AST) and collected all the API calls from the
programs. Then the functionality of an API is used to identify the
stage of the pipeline. We extracted the temporal order of API calls
to identify the stages. Standard static analysis of the Python pro-
grams facilitate the extraction process. Our analysis suggests that
the DS programs follow a linear structure with less than 4% AST
nodes being conditional or loops. Wang et al. proposed a similar ap-
proach for extracting external dependencies in Jupyter Notebooks
by creating an API database and analyzing AST [125].

We created a dictionary by mapping each API collected from the
programs, to one of the 11 stages of the DS pipeline described in
section §2. During the mapping, we excluded the generic APIs from
the dictionary. For example, model.summary() is used to print the
model parameters and does not represent any stage of the pipeline.
For creating the dictionary, we taken a two-fold approach. First,
we understand the context of the program and API usage. Second,

Data
Acquisition

Data
Preparation Modeling Training Evaluation Prediction

Figure 6: Pipeline in-the-small extracted from API usages
98 102

73 76

38

74

ACQ PRP MDL TRN EVL PRD

Figure 7: Frequency of pipeline stages in-the-small

we look at the API documentation to confirm the corresponding
pipeline stage. We found that DS APIs are definitive in their oper-
ations and well-categorized by the library. For example, the APIs
in Keras [60] and Scikit-learn [61] are grouped into preprocess-
ing, models, etc. Our API-dictionary was manually validated by a
second-rater and moderator who labeled DS pipelines in section
§2. Then, we built a tool which takes the API dictionary and DS
program, and automatically creates the DS pipeline. For a sequence
of APIs with the same stage, we abstracted them into a single stage.
As an example, Figure 5 shows a DS pipeline created from a Kaggle
solution [54]. Each stage in the pipeline (e.g., ACQ, PRP) represents
one or more API usages. The arrows in the pipeline denote the tem-
poral sequence of stages. Note that, one stage can appear multiple
times in a pipeline. The API dictionary, Kaggle programs, and tool
to generate the pipelines is shared in the paper artifact [7].

3.2 Representative Pipeline in-the-Small
RQ4:What are the stages ofDS pipeline in-the-small?Among
the 11 pipeline stages described in Figure 3, we found only 6 stages
in the DS programs that are depicted in Figure 6. Other stages (e.g.,
storage, feature engineering, interpretation, communication, deploy-
ment) are not found in these programs because these stages occur
while building a production-scale large DS system and often not
present in the DS notebooks. Therefore, the pipeline in DS programs
consists of the subset of pipeline stages in theory.

We summarized the frequency of each stage of the DS programs
in Figure 7. Among 105 programs, data acquisition and data prepa-
ration are present in almost all of them. Surprisingly, modeling is
present in only 70% of the programs. We found that, in many pro-
grams, no modeling APIs had been used because developers did not
use any built-in ML algorithm from libraries, e.g., LogisticRegres-
sion, LSTM, etc. In these cases, the developers use data-processing
APIs on the training data to build custom model, e.g., this note-
book [55] uses data preparation APIs to produce results. To enable
more abstraction of the stages in these pipelines, further modular-
ization is necessary, which has been investigated in RQ8.

Finding 3: Evaluation stage is infrequent, appearing only in 36%
of the pipelines in-the-small.

Evaluation is a tricky stage of the DS pipeline. Developers have to
choose the appropriate metric and methodology to evaluate their
model. Based on the evaluation result, the model is updated over
multiple iterations. We found that, besides using metrics, in many

The Art and Practice of Data Science Pipelines ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0%

20%

40%

60%

80%

100%

Before After Before After Before After Before After Before After Before After

ACQ PRP MDL TRN EVL PRD

ACQ PRP MDL TRN EVL PRD

Figure 8: Stages occurring before and after each stage

cases, evaluation requires human understanding and comparison
of the result produced by the model. The reason for having less
number of evaluation stage in the pipeline is that often the develop-
ers evaluate the performance by plotting and visualizing the result.
Since the visualization APIs are not considered as evaluation stage,
we found this stage less frequently in pipelines. Also, many pro-
grams directly go to the prediction stage without going to evaluation
stage at all. Furthermore, notebooks are often used for experimen-
tation purposes so that many computations are performed during
development but eliminated when the notebooks are shared [62].
For example, one developer might try a number of classifiers and
evaluate their accuracy. After finding the best performing classi-
fier, it can be the only one shared in the notebook. Therefore, we
experienced many missing stages in the pipeline in-the-small. The
complex DS tasks require several computations which might not
be used in producing the final prediction, but definitely should be
considered as part of the pipeline.

3.3 Pipeline Organization in the Small
RQ5: How are the stages connected with each other in pipe-
line in-the-small? To answer RQ5, we considered each occurrence
of the stages in a DS program and looked at its previous and next
stage. In Figure 8, we showed which stages are followed or preceded
by each stage. We found that data preparation can occur before or
after all other stages. Apart from that, data acquisition is followed
by data preparation most of the time, which in turn is followed
by modeling. Modeling is followed mostly by training, which in
turn is followed by prediction. Evaluation is mostly surrounded
by prediction and data preparation. From Figure 8, we can also
find some most occurring feedback loop: evaluation to preparation,
evaluation to modeling and prediction to modeling.

Data preparation tasks (e.g., formatting, reshaping, sorting) are
not limited to just before the modeling stage, rather it is done on a
whenever-needed basis. For example, in the following code snippet
from a Kaggle competition [56], while creating model-layers, data
preprocessing API has been called in line 2.
1 x = Conv2D (mid , (4 , 1) , a c t i v a t i o n = ' r e l u ' , padding= ' v a l i d ') (x)
2 x = Reshape ((branch_model . ou tpu t_ shape [1] , mid , 1)) (x)
3 x = Conv2D (1 , (1 , mid) , a c t i v a t i o n = ' l i n e a r ' , padding= ' v a l i d ') (x)
4 x = F l a t t e n (name= ' f l a t t e n ') (x)
5 head_model = Model ([xa_inp , xb_ inp] , x , name= ' head '

The modeling stage is always surrounded by other stages of the
pipeline. However, there is often a loop around modeling, training,
evaluation, and prediction. Modeling often repeats many times to
improve the model over multiple iterations. For example, in the

following Kaggle code snippet [57], the model is created and trained
multiple times to find the best one.

1 r andom_fo re s t = R andomFo r e s tC l a s s i f i e r (n _ e s t ima t o r s =100 ,
r andom_s ta t e =50 , v e rbo se =1 , n_ job s = −1) # Model ing

2 r andom_fo re s t . f i t (t r a i n , t r a i n _ l a b e l s) # Tra in
3 . . .
4 p o l y _ f e a t u r e s = s c a l e r . f i t _ t r a n s f o rm (p o l y _ f e a t u r e s)
5 p o l y _ f e a t u r e s _ t e s t = s c a l e r . t r an s f o rm (p o l y _ f e a t u r e s _ t e s t)
6 r andom_ fo r e s t _po ly = R andomFo r e s tC l a s s i f i e r (n _ e s t ima t o r s =100 ,

r andom_s ta t e =50 , v e rbo se =1 , n_ job s = −1) # Model ing
7 r andom_ fo r e s t _po ly . f i t (p o l y _ f e a t u r e s , t r a i n _ l a b e l s) # T r a i n i ng
8 pred = random_ fo r e s t _po ly . p r e d i c t _ p r o b a (p o l y _ f e a t u r e s _ t e s t) [: , 1]

Finding 4: Stages of pipelines in-the-small are often tangled with
each other.
All of the DS programs fail to maintain a good separation of con-
cerns [28] between stages. Strong abstraction boundaries help to
make the program modular and easy-to-maintain [81, 82, 84]. In
addition, a good DS solution should not only compute better pre-
dictive result, but also facilitate software engineering activities e.g.,
debugging, testing, monitoring [42]. However, we found that stages
are often tangled with other stages [18, 64, 88] across the pipelines.
The code for one stage is interspersed with the code for other stages.
For example, while building the deep learning network (modeling),
the developers often switch to different data preparation tasks, e.g.,
reshaping, resizing [48, 49], which tangles data preparation concern
with the modeling concern. We observed some early attempts to
adopt modular design practices. For instance, this notebook [58]
separated code into different high-level stages, namely, prepara-
tion, feature extraction, exploratory data analysis (EDA), topic model,
etc. These high-level pipelines can improve the abstraction, which
further enable the maintainability, and reusability [97]. In some
scenarios, reuse or maintenance might not be desired for pipelines
in-the-small. However, to enhance readability [62] and repeatability
[42] and ease of testing, debugging or repairing [126, 127], more
attention on modular design practices is needed for DS pipelines.

Finding 5: Data preparation stage is occurring significant number
of times between any two stages of pipelines in-the-small, which is
causing pipeline jungles.

We found that new data sources are added, new features are identi-
fied, and new values are calculated incrementally in the pipeline
which evolves organically. This results in a large number of data
preprocessing tasks like sampling, joining, resizing along with ran-
dom file input-output. This is called pipeline jungles [103], which
causes technical debt for DS systems in the long run. Pipeline jun-
gles are hard to test and any small change in the pipeline will
take a lot of effort to integrate. The situation gets worse in case of
larger DS pipelines, where several data management activities (e.g.,
clean, serve, validate) are necessary through the pipeline in differ-
ent stages [85, 86]. The recommended way is to think about the
pipeline holistically and scrape the pipeline jungle by redesigning it,
which in turn takes further engineering effort [103]. We found that
the large DS projects, which are discussed in §4, isolate the data
preparation tasks into separate files and modules [17, 100, 118, 134],
which alleviates the pipeline jungles problem. So, DS pipeline in-
the–small needs further IDE (e.g., Jupyter Notebook, etc.) support
and methodologies for code isolation and modularization.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

Load Data
and Library

Feature
Engineering Modeling Training Evaluation

& Visualization
PredictionEDA

& Visualization
Data

Preparation

Figure 9: Representative data science pipeline in-the-small

3.4 Characteristics of Pipelines in-the-Small
RQ6:What are the patterns in pipeline in-the-small andhow
it compares to pipeline in theory? We have not found many
stages from Figure 3, e.g., feature engineering, interpretation, com-
munication, in pipeline in-the-small. One reason is that the low-
level pipeline extracted from the API usages cannot capture some
stages. For example, even if a developer is conducting feature engi-
neering, the used APIs might be from the data preparation stage.
Fortunately, we foundmany Kaggle notebooks that are organized by
the pipeline stages. We visited all the 105 Kaggle notebooks in our
collection and extracted these high-level pipelines manually. Unlike
the low-level pipelines (extracted using API usages), a high-level
pipeline consists of the stages abstracted by the developers.

The Kaggle notebooks follow literate programming paradigm [97,
122], which allows the developers to describe code using rich text
and separate them into sections. We found that 34 out of 105 note-
books divided the code into stages. We collected those stages from
the Kaggle notebooks. Furthermore, we labeled these notebooks
into the 11 stages from DS pipeline in theory by two raters, and
extracted the stages that are not present in theory. The extracted
high-level pipelines and labels are available in the paper artifact [7].

We observed that no notebooks specify these stages: storage,
interpretation, communication, and deployment. These DS programs
are not production-scale projects. Therefore, they do not include the
post-processing stages in the pipeline. The most common stages are
modeling (79%), data preparation (62%), data acquisition (53%), and
feature engineering(35%), which is aligned with the finding of DS
pipeline in theory. In addition, we found these stages which are not
present in theory: library loading, exploratory data analysis (EDA),
visualization. Among them EDA has been used most of the times
(43%) and covered the most part of those pipeline. Before going
to the modeling and successive stages, a lot of effort is given on
understanding the data, compute feature importance, and visualize
the patterns, which help to build models quickly in later stages [9].

Furthermore, some notebooks present library loading as separate
stage. We observed that choosing appropriate library/framework
and setting up the environment is an important step while devel-
oping pipeline in-the-small. We also found that data visualization
is an recurring stage mentioned by the developers. Visualization
can be done for EDA or feature engineering (before modeling), or
for evaluation (after modeling). Based on these observations we
updated the representative pipeline in-the-small in Figure 9. The
high-level pipeline provides an overall representation of the sys-
tem, which can be leveraged to design software process. It would be
beneficial for the developers to close the gap between the low-level
and the high-level pipeline by identifying the tangled stages.

4 DS PIPELINE IN-THE-LARGE
The DS solutions described in the previous section are specific to a
given dataset and a well-defined problem. However, there are many

Table 2: GitHub projects for analyzing pipeline in-the-large

Project Name Purpose #Files #AST LOC
Autopilot [5] Pilot a car using computer vision 36 11185 348
CNN-Text-Classification [17] Sentence classification 69 47797 11.4K
Darkflow [118] Real-time object detection and classification 1025 655670 8.6K
Deep ANPR [31] Automatic number plate recognition 64 70464 10.8K
Deep Text Corrector [80] Correct input errors in short text 47 50770 3.0K
Face Classification [8] Real-time face and emotion/gender detection 292 117901 35.3K
FaceNet [100] Face recognition 1352 1889529 18.2K
KittiSeg [115] Road segmentation 276 187143 4.8K
LSTM-Neural-Network [10] Predict time series steps and sequences 24 11434 1.2K
Mask R-CNN [2] Object detection and instance segmentation 256 1567786 15.6K
MobileNet SSD [89] Object detection network 28 21272 25.6K
MTCNN [21] Joint face detection and alignment 153 121138 219.7K
Object-Detector-App [24] Real-time object recognition 215 318534 47.9K
Password-Analysis [98] Analyze a large corpus of text passwords 148 67870 3.6K
Person Blocker [132] Block people in images 12 44517 977
QANet [134] Machine reading comprehension 83 107669 2K
Speech-to-Text-WaveNet Sentence level english speech recognition 32 18626 5.1K
Tacotron [83] Text-to-speech synthesis 114 58845 1.4K
Text-Detection-CTPN [95] Text detection 640 257083 18.4K
TF-Recomm [112] Recommendation systems 17 7789 535
XLNet [137] Language understanding 36 143172 11.5K

DS projects which are large, not limited to a single source file, and
contains multiple modules. These solutions are intended to solve
more general problems which might not be specific to a dataset. For
example, the objective of the Face Classification project in GitHub
[8] is to detect face from images or videos and classify them based
on gender and emotion. This problem is not specific to a particular
dataset and the scope is broader compared to the Kaggle solutions.
We collected such top-rated DS projects from GitHub to analyze
DS pipeline in-the-large.

4.1 Methodology
Biswas et al. published a dataset containing top rated DS projects
fromGitHub [14]. From the list of projects in this dataset, we filtered
mature DS projects having more than 1000 stars. Thus, we found
269 mature GitHub projects. However, there are many projects in
this list which are DS libraries, frameworks or utilities. Since we
want to analyze the pipeline of data science software, we removed
those projects. Finally, we also removed the repositories which
serve educational purposes. Thus, we found a list of 21 mature
open-source DS projects. The list of projects, and their purpose are
shown in Table 2.

For each project, we created two pipelines: high-level pipeline
and low-level pipeline. For creating the high-level pipeline, we
manually checked the project architecture, module structure and
execution process. This gave us a good understanding of the source
file organization and linkage betweenmodules. After identifying the
high-level pipeline and execution sequences of the source files, we
used the same API based method used to analyze Kaggle programs
in the previous section, to create low-level pipeline of these GitHub
projects. The methodology of selecting and extracting pipelines
from the GitHub projects is shown in Figure 10.

For example, the project QANet [134] is intended to do machine
reading comprehension. Here, Python has been used as the primary

The Art and Practice of Data Science Pipelines ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

projects for data
science

High level
pipeline

21 Mature
Github

Projects
Low level
pipeline

Filter out projects
 - stars < 1000
 - libraries
 - utility
 - tutorials

Analyze
pipeline

architecture

Source code

Figure 10: Pipeline creation process for GitHub projects

language, and shell script has been used for data downloading and
project setup. The high-level pipeline for QANet includes the stages:
data acquisition, data preparation,modeling, training, evaluation and
prediction. In the beginning, config.py file integrates the modules
(preparation, modeling, and training) and provides an interface
to configure a model by specifying dataset and other parameters.
Then, the file evaluate.py is executed to perform the evaluation
and prediction. For the low-level pipeline, for a specific file, we
used the API based analysis to generate the pipeline, which was
used to analyze pipeline in-the-small. For instance, in the project
QANet, although model.py serves modeling at a high level, it also
does data preparation, training, and evaluation, when APIs are
considered. In addition to the pipeline stages, we also identified
a few other properties of each project: 1) number of contributors,
2) AST count, 2) technology/language used, 3) entry points and 4)
execution sequence. We leveraged the Boa infrastructure [29, 30]
to analyze the different properties of the projects. These properties
helped us to categorize and analyze the pipeline in-the-large. The
details of the projects are available in the paper artifact [7].

The projects are from various domains: object detection, face
classification, automated driving, speech synthesis, number plate
recognition, predict time series sequence, etc. The number of devel-
opers in each project ranges between 1 and 40 with an average of
8. Among 21 projects, 16 of them are developed by teams and 5 of
them are developed by individuals. The primary language used to
develop these projects is Python.

4.2 Representative Pipeline in-the-Large
Compared to the Kaggle programs, we found a significant differ-
ence in the pipeline of large DS projects. Because of the larger
size of the projects, the pipeline architecture is different. All the
projects contain multiple source files for handling different tasks
(e.g., modeling, training) and about 50% of the projects organize the
source files into modules (e.g., utils, preprocessing, model, etc.).

RQ7:What is the representative DS pipeline in-the-large?
Each of the projects contains six stages described in Figure 6: ac-
quisition, preparation, modeling, training, evaluation, and prediction.
However, since the projects are not coupled to a specific dataset
and they solve a more general problem, the projects are not lim-
ited to one single pipeline. We found that the pipeline of each
project is divided into two phases: 1) development phase and 2)
post-development phase, which is depicted in Figure 11.

In development phase, the main goal is to build a model that
solves the problem in general. A base dataset is used to build the
model that would be used for other future datasets. After completing
a modeling, training, evaluation loop, the final model is created and
saved as an artifact. Afterwards, the projects also create model
interfaces, which lets the user modify and exploit the model in
the post-development phase. Finally, the model artifact is saved as
a source file or some model archiving formats. For example, the

Modify model

A
cq

ui
si

tio
n

TrainingModeling

Model artifact

Training

P
re

pa
ra

tio
n

P
re

di
ct

io
n

Evaluation

Evaluation

Training Evaluation

Trained model

Development phase

Post-development phase

Figure 11: DS pipeline in-the-large. Development phase (top)
runs during model building and post-development phase
(bottom) runs for making prediction.

project Person-Blocker [132] and Speech-to-Text-WaveNet [66] saved
the model in the source file (model.py) and lets the users train the
model in the next phase. On the other hand, the project KittiSeg
[115] andAutopilot [5] saved the built model artifact in JSON format
(.json) and checkpoint format (.ckpt) respectively. We observed
that the evaluation and prediction is often not the main goal in
this phase; rather, building an appropriate model and making it
available for further usage is the central activity.

In post-development phase, the users access the pre-built
model and use that for prediction. After acquiring data, a few
preprocessing steps are needed to feed the model. In all of the
projects under this study, we found that the development phase
is similar. However, we identified three different patterns in the
post-development phase which are shown in Figure 11. First, the
users can modify the model by setting its hyperparameters and use
that to make prediction on a new dataset. Second, the users can
use the model as-it-is and train the model on the new dataset to
make prediction. Third, the users can also download the pre-trained
model and directly leverage that for prediction. Finally, at the end
of this phase, the prediction result is obtained.

The post-development phase in the pipeline enabled software
reusability of the models. All of these projects have instructions in
their readme or documentation explaining the usage and customiza-
tion. For example, the project Deep ANPR [31] provides instructions
for obtaining large training data, retraining the models, and build
it for prediction. However, not all the projects enable reusability
in the development pipelines. Only a few of them provides access
to the modules by importing in new development scenario. For
instance, Darkflow [118] let users access the darkflow.net.build
module and use it in new application development. To increase the
reusability of DS programs, it would be desired to consider similar
access to the development pipeline of these large projects.

4.3 Organization of DS Pipeline in-the-Large
RQ8: How are the stages connected in pipeline in-the-large?
The abstraction in DS projects is stricter than the DS programs
described in §3. The projects are built in a modular fashion, i.e.,
one source file for a broad task (e.g., train.py, model.py). How-
ever, inside one specific file, there are many other possible stages,
especially data preprocessing appears inside all the source files. In
addition, the module connectivity is not linear. All of the modules
use external libraries for performing different tasks. As a result,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

there are a lot of interdependencies (both internal and external) in
the DS pipeline. One immediate difference of these pipelines with
traditional software is DS pipelines are heavily dependant on the
data. For example, the project Speech-to-Text-WaveNet [66] requires
a certain format of data. When we want to use that in a new situa-
tion, the data properties might be different. So, the usage pipelines
would have a few additional stages. In some cases, the original
pipeline is modified. Here, there are many sub-pipelines work to-
gether to build a large pipeline. However, we have not found any
framework or common methodology these software are using. The
different patterns of DS pipelines seek more advanced methodology
or framework to build DS pipeline and release for production.

4.4 Characteristics of Pipelines in-the-Large
RQ9: What are the patterns found in the pipelines? The pipe-
lines found in this setting can be categorized into 1) loosely coupled
and 2) tightly coupled, based on their modularity. A high number of
contributors in the project resulted in loosely coupled pipelines. We
found the loosely coupled ones are designed in a modular fashion
and one module (e.g., data cleaning, modeling) is designed to be
used by other modules. Usually, there are multiple entry-points in a
loosely coupled pipeline and user has more flexibility. On the other
hand, in a tightly coupled pipeline, the modules are stricter and
integrated tightly with other modules. There is only one or two
entry-points to the pipeline, which automatically calls the other
modules. We found that the projects with 6 or more contributors
(∼75%) followed a loosely coupled architecture and projects with 1
to 5 contributors followed a tightly coupled architecture.

Finding 6: There is need for integration and deployment tools for
pipelines in-the-large but no common framework is used in practice.

Although all the project under this study are written using
Python, no project is using any common tool that integrates the
DS modules and provides interface to the pipeline. Today, contin-
uous integration and deployment (CI/CD) tools are widely used
in traditional software lifecycle to automate compilation, build-
ing, and testing [43, 59]. Additionally, from our subject studies
of pipelines in theory, we found some CI/CD tools designed for
ML pipelines available [44, 74, 76]. Surprisingly, here we found no
projects in pipeline in-the-large are using any CI/CD tools. How-
ever, the projects demonstrate the need of CI/CD in the repositories.
In most of the projects, the environment setup and access to func-
tionalities are configured through command lines scripts [5, 95].
Some projects used docker container [8, 66, 100, 132] to set up the
environment and run the pipeline. A few others used Python note-
books that call different modules to integrate the pipeline stages
[2, 24, 80]. 7 out of 21 projects used shell script for integration
(e.g., sending HTTP request to download data, model reuse, etc.)
[89, 134]. Although CI/CD frameworks e.g., TravisCI, GitHub Ac-
tions, Microsoft Azure DevOps are well established for traditional
software such as web applications, several challenges remain for
DS pipelines. Karlaš et al. outlined the probabilistic nature of ML
testing as a major CI/CD challenge and pointed out the gap between
recent theoretical development of CI/CD in DS and their usage in
practice [59]. Hence, further research is needed to investigate the
practical challenges of using CI/CD in data science projects.

5 DISCUSSION
Through our survey, empirical study, and analysis, we presented
the state of data science pipeline that describes its semantics, design
concerns, and the overall computational paradigm. Furthermore,
the findings show the importance of studying the pipeline structure
reminiscing the traditional software engineering works on design
patterns and architecture.

In Theory: We presented all the representative stages and sub-
tasks that inform the terminology of DS pipelines to be used in
future works. By comparing with the available pipeline categories
e.g., ML process, big data, and team processes, similarities and diver-
gences can be directly identified. The presence of implicit feedback
loops and lack of post-processing stages suggest ad hoc pipeline
construction at the present time. This paper takes the first step
towards comparable and reusable pipeline construction.

In-The-Small: The novel API-based analysis can be utilized for
mining, extracting, and statically analyzing pipelines. We also
elicited the notion of high-level and low-level pipelines, where
the high-level abstraction has more similarity with that in theory.
However, low-level pipelines exhibit many differences such as miss-
ing some stages, sparse data preparation, lack of modularization.
The gap between low-level pipeline and its presentation in high-
level can be reduced by making pipeline specific features available
in development environment e.g., pipeline template in Jupyter Note-
book. Additionally, the low-level pipelines often had an important
stage exploratory data analysis missing which incurs much time
and effort. Pipeline versioning techniques that consider data, model,
and source code will facilitate storing such intermediate stages.

In-The-Large: Different pipeline patterns emerged in develop-
ment and post-development phase of the large projects, which
suggest creating separate developer-centric and user-centric pipeline
structure. In tightly-coupled projects, the abstraction of stages are
contingent upon the project-specific requirements and internal/ex-
ternal dependencies, whereas, in loosely-coupled projects, opportu-
nities remain to build reusable sub-pipelines that span over project
boundaries. Finally, there is a need for building automated CI/CD
tools for data science specific testing, deployment, and maintenance.

To researchers and tool builders. (1) Modularization of DS
pipeline into stages is challenging over all three representations.
Further works are needed for standardization of pipeline architec-
ture e.g., defining the interfaces of stages, enumerating externally
visible properties, identifying domain-specific constraints, to de-
velop reusable and interoperable DS pipelines. (2) We showed po-
tentials for automatic pipeline analysis framework based on static
analysis and API specifications. A few future directions would
be mining (sub-)pipelines patterns, build AutoML pipelines [78],
and analyzing evolution. (3) We confirmed several antipatterns of
pipelines that call for actions e.g., CACE principle, pipeline jungles,
scarce post-processing, implicit feedback loop, CI/CD challenges.
(4) Pipeline specific tool support is needed such as version control
for data and models, storing intermediate results between stages.

To data scientists and engineers. (1) Pipelines are often built
for a prototype in-the-small, which might not scale to a production
level system. A well-designed pipeline in the early stage will help
to identify key components, estimate cost, optimize, and manage
risks better in the lifecycle. (2) The representative views of pipelines

The Art and Practice of Data Science Pipelines ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

will serve as a checklist of stages and their connections. (3) Data
and algorithms being the focus of DS pipeline, preprocessing and
modeling activities are well understood and practiced by data scien-
tists. However, they should emphasize more on including rigorous
evaluation beyond accuracy such as robustness and fairness [15, 16].
(4) Many people with diverse backgrounds are involved in a DS
pipeline. A pipeline with human-in-the-loop approach will benefit
identifying collaboration points, decomposing tasks, and manage
transdisciplinary teams. For example, a pipeline can encourage
data scientists to choose a modeling technique that is maintain-
able. (5) Future work is necessary to identify the interactions of DS
pipeline with the real world i.e., which stages receive inputs, when
a checkpoint is saved, how results are disseminated, etc.

6 THREAT TO VALIDITY
For building the pipelines from DS programs, we relied on the APIs.
One threat might be, what happens if the developer does not use
any API for completing a stage in the program. We examined this
possibility and found that DS programs are heavily dependent on
libraries and external APIs and ML tasks are always performed
using library APIs. Additionally, we validated the API-to-stage
dictionary with the API documentation and manual verification.

Another possible threat is that the Kaggle solutions might not
be representative. We adopted a two-fold strategy to mitigate that
threat. First, we selected the solutions with the most number of
votes and at least 10 votes. Second, we manually verified each
program whether it is an end-to-end DS solution. Since some most
voted solutions are only for introduction and exploratory analysis
of the dataset, by manual verification, we excluded those programs.
The GitHub projects are also taken from a previously published
dataset containing DS repositories. We further filtered them based
on the number of stars and whether they perform a DS task.

Moreover, since the chosenDS programs fromKaggle andGitHub
are using Python as the primary language, another question might
be on the generalization of them as DS programs. According to
GitHub and Stack Overflow, Python has become the most growing
language in recent times [47, 93]. In data science, Python is the
most used language because of the availability of numerous ML, DL
and data analysis packages such as Pandas, NumPy, TensorFlow,
Keras, Caffe, Theano, Scikit-Learn and many more.

7 RELATEDWORK
Many studies presented ML pipeline in their own context, which
can not be generalized for all DS systems. Garcia et al. focused
on building an iterative process with three main phases: develop-
ment, training and inference. They described the interpretation of
data and code while integrating the whole lifecycle [36]. Polyzotis
et al. presented the challenges of data management in building
production-level ML pipeline in Google around three broad themes:
data understanding, data validation and cleaning, and data prepa-
ration [85, 86]. They also provided an overview of an end-to-end
large-scale ML pipeline with a data point of view. Carlton E. Sapp
defined ML concepts, business challenges, stages in the lifecycle,
roles of DS teams with comprehensive end-to-end ML architec-
ture [101]. This gives us a holistic understanding of the business
processes (e.g., acquire, organize, analyze, deliver) of a DS project.

A few other studies try to capture the DS process by surveying
and interviewing developers. Roh et al. surveyed the data collection
techniques in the field of big data. They presented the workflow
of data collection answering how to improve data or models in an
ML system [94]. Another study identified the software engineering
practices and challenges in building AI applications insideMicrosoft
development teams [6]. They found some key differences in AI
software process compared to other domains. They considered a 9-
stage workflow for DS software development. Hill et al. interviewed
experienced AI developers and identified problems they face in
each stage [42]. They also tried to compare the traditional software
process and the AI process. Zhou presented her own view to build
a better ML pipeline [139]. They presented three challenges in
building ML pipelines: data quality, reliability and accessibility.

Some articles described ML applications and frameworks which
present DS pipelines from industry. For example, Databricks pro-
vides high-level APIs for programming languages [44]. Team Data
Science Process (TDSP) is an agile and iterative process to build
intelligent applications inside Microsoft corporation [104]. In a US
patent, the authors compared two data analytic lifecycles [116], and
presented the difference in the set of parameters with respect to time
and cost. CRoss Industry Standard Process for Data Mining (CRISP-
DM) is a 6-stage comprehensive process model for data mining
projects across any industry [130]. Google Cloud Blog described the
workflow of an AI platform [40]. They explained tasks completed
in each stage with respect to Google Cloud and TensorFlow[1].
Although there are many papers in the literature presenting DS
pipeline, there is no comprehensive study that tries to understand
and compare DS pipelines in theory and practice.

8 CONCLUSION
Many software systems today are incorporating a data science
pipeline as their integral part. In this work, we argued that to facili-
tate research and practice on data science pipelines, it is essential to
understand their nature. To that end, we presented a three-pronged
comprehensive study of data science pipelines in theory, data sci-
ence pipelines in-the-small, and data science pipelines in-the-large.
Our study analyzed three datasets: a collection of 71 proposals for
data science pipelines and related concepts in theory, a collection
of 105 implementations of data science pipelines from Kaggle com-
petitions to understand data science in-the-small, and a collection
of 21 mature data science projects from GitHub to understand data
science in-the-large. We have found that DS pipelines differ signifi-
cantly between these settings. Specifically, a number of stages are
absent in-the-small, and the DS pipelines have a more linear struc-
ture. The DS pipelines in-the-large have a more complex structure
and feedback loops compared to the theoretical representations. We
also contribute three representations of DS pipelines that capture
the essence of our subjects in theory, in-the-small, and in-the-large.

ACKNOWLEDGMENTS
This work was supported in part by US NSF grants CNS-21-20448
and CCF-19-34884. We also thank the reviewers for their insightful
comments. All opinions are of the authors and do not reflect the
view of sponsors.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

[2] Waleed Abdulla. 2017. Mask R-CNN for object detection and instance segmen-
tation on Keras and TensorFlow. https://github.com/matterport/Mask_RCNN.

[3] Sudeep Agarwal. 2018. Understanding the Data Science Lifecycle. http://sudeep.
co/data-science/Understanding-the-Data-Science-Lifecycle.

[4] Charu Aggarwal, Djallel Bouneffouf, Horst Samulowitz, Beat Buesser, Thanh
Hoang, Udayan Khurana, Sijia Liu, Tejaswini Pedapati, Parikshit Ram, Ambrish
Rawat, et al. 2019. How can ai automate end-to-end data science? arXiv preprint
arXiv:1910.14436 (2019).

[5] Jesse Hu Alexis Chan, Octavio Arriaga. 2017. Autopilot-TensorFlow. https:
//github.com/SullyChen/Autopilot-TensorFlow.

[6] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In Proceedings
of the 41st International Conference on Software Engineering. ACM.

[7] Anonymous. 2021. Data Science Pipline Artifact. https://github.com/
anonymous-authorss/DS-Pipeline.

[8] Octavio Arriaga. 2018. Face classification and detectionn. https://github.com/
oarriaga/face_classification.

[9] Rob Ashmore, Radu Calinescu, and Colin Paterson. 2021. Assuring the Machine
Learning Lifecycle: Desiderata, Methods, and Challenges. ACM Comput. Surv.
54, 5, Article 111 (may 2021). https://doi.org/10.1145/3453444

[10] Jakob Aungiers. 2019. LSTM Neural Network for Time Series Prediction. https:
//github.com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction.

[11] Alex Ball. 2012. Review of data management lifecycle models. University of Bath,
IDMRC.

[12] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. TFX: A
tensorflow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 1387–1395.

[13] Francine Berman, Rob Rutenbar, Brent Hailpern, Henrik Christensen, Susan
Davidson, Deborah Estrin, Michael Franklin, Margaret Martonosi, Padma Ragha-
van, Victoria Stodden, et al. 2018. Realizing the potential of data science. Com-
mun. ACM 61, 4 (2018), 67–72.

[14] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. 2019. Boa
meets Python: a Boa dataset of data science software in Python language. In
Proceedings of the 16th International Conference on Mining Software Repositories.
IEEE Press, 577–581.

[15] Sumon Biswas and Hridesh Rajan. 2020. Do the Machine Learning Models on a
Crowd Sourced Platform Exhibit Bias? An Empirical Study on Model Fairness.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual
Event, USA). 642–653. https://doi.org/10.1145/3368089.3409704

[16] Sumon Biswas and Hridesh Rajan. 2021. Fair Preprocessing: Towards Under-
standing Compositional Fairness of Data Transformers in Machine Learning
Pipeline. In ESEC/FSE’2021: The 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece).

[17] Denny Britz. 2018. Convolutional Neural Network for Text Classification in
Tensorflow. https://github.com/dennybritz/cnn-text-classification-tf .

[18] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
2003. Feature Interaction: A Critical Review and Considered Forecast. Comput.
Netw. 41, 1 (Jan. 2003), 115–141. https://doi.org/10.1016/S1389-1286(02)00352-3

[19] Maurice Chang. 2017. 4 Stages of the Machine Learning (ML) Modeling Cy-
cle. https://www.linkedin.com/pulse/4-stages-machine-learning-ml-modeling-
cycle-maurice-chang.

[20] CL Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications,
challenges, techniques and technologies: A survey on Big Data. Information
sciences 275 (2014), 314–347.

[21] Z Ming Chen Mengda. 2018. reproduce MTCNN,a Joint Face Detection and
Alignment using Multi-task Cascaded Convolutional Networks. https://github.
com/AITTSMD/MTCNN-Tensorflow.

[22] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: Building an efficient and scalable deep learning train-
ing system. In 11th {USENIX} Symposium on Operating Systems Design and
Implementation (𝑂𝑆𝐷𝐼 14). 571–582.

[23] George E Dahl, Navdeep Jaitly, and Ruslan Salakhutdinov. 2014. Multi-task
neural networks for QSAR predictions. arXiv preprint arXiv:1406.1231 (2014).

[24] Sam Crane Dat Tran. 2018. Real-Time Object Recognition App with Tensorflow
and OpenCV. https://github.com/datitran/object_detector_app.

[25] Hal Daumé III. 2016. What Is a Machine Learning Pipeline? https://nlpers.
blogspot.com/2016/08/debugging-machine-learning.html.

[26] Yuri Demchenko, Fatih Turkmen, Cees de Laat, Christophe Blanchet, and Charles
Loomis. 2016. Cloud based big data infrastructure: Architectural components
and automated provisioning. In 2016 International Conference on High Perfor-
mance Computing & Simulation (HPCS). IEEE, 628–636.

[27] Yuri Demchenko, Zhiming Zhao, Paola Grosso, Adianto Wibisono, and Cees
De Laat. 2012. Addressing big data challenges for scientific data infrastructure.
In 4th IEEE International Conference on Cloud Computing Technology and Science
Proceedings. IEEE, 614–617.

[28] Edsger W Dijkstra. 1982. On the role of scientific thought. In Selected writings
on computing: a personal perspective. Springer, 60–66.

[29] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.
Boa: A Language and Infrastructure for Analyzing Ultra-Large-Scale Software
Repositories. In Proceedings of the 35th International Conference on Software
Engineering (San Francisco, CA) (ICSE’13). 422–431.

[30] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2015. Boa:
Ultra-Large-Scale Software Repository and Source-Code Mining. ACM Trans.
Softw. Eng. Methodol. 25, 1, Article 7 (Dec. 2015), 34 pages. https://doi.org/10.
1145/2803171

[31] Matthew Earl. 2016. Using neural networks to build an automatic number plate
recognition system. https://github.com/matthewearl/deep-anpr.

[32] Mohammed El Arass and Nissrine Souissi. 2018. Data lifecycle: from big data to
SmartData. In 2018 IEEE 5th international congress on information science and
technology (CiSt). IEEE, 80–87.

[33] Douglas Fisher. 2017. A selected summary of AI for computational sustainability.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

[34] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. 1993. De-
sign Patterns: Abstraction and Reuse of Object-Oriented Design. In Proceedings
of the 7th European Conference on Object-Oriented Programming (ECOOP ’93).
Springer-Verlag, Berlin, Heidelberg, 406–431.

[35] Amir Gandomi and Murtaza Haider. 2015. Beyond the hype: Big data concepts,
methods, and analytics. International journal of information management 35, 2
(2015), 137–144.

[36] Rolando Garcia, Vikram Sreekanti, Neeraja Yadwadkar, Daniel Crankshaw,
Joseph E Gonzalez, and Joseph M Hellerstein. 2018. Context: The missing piece
in the machine learning lifecycle. In KDD CMI Workshop, Vol. 114.

[37] David Garlan. 2000. Software architecture: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering. 91–101.

[38] Yolanda Gil, Ke-Thia Yao, Varun Ratnakar, Daniel Garijo, Greg Ver Steeg, Pedro
Szekely, Rob Brekelmans, Mayank Kejriwal, Fanghao Luo, and I-Hui Huang.
2018. P4ML: A phased performance-based pipeline planner for automated
machine learning. In AutoML Workshop at ICML.

[39] Stephanie Glen. 2019. The Lifecycle of Data. https://www.datasciencecentral.
com/profiles/blogs/the-lifecycle-of-data.

[40] Google Cloud Blog. 2019. Machine Learning Workflow. https://cloud.google.
com/ml-engine/docs/tensorflow/ml-solutions-overview.

[41] Yufeng Guo. 2017. The 7 Steps of Machine Learning. https://towardsdatascience.
com/the-7-steps-of-machine-learning-2877d7e5548e.

[42] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016.
Trials and tribulations of developers of intelligent systems: A field study. In 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 162–170.

[43] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-Offs in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 2017 11th JointMeeting on Foundations of Software
Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for Computing
Machinery, New York, NY, USA, 197–207. https://doi.org/10.1145/3106237.
3106270

[44] Sue Ann Hong and Tim Hunter. 2017. Build, Scale, and Deploy Deep Learning
Pipelines with Ease. https://databricks.com/blog/2017/09/06/build-scale-deploy-
deep-learning-pipelines-ease.html.

[45] Han Hu, Yonggang Wen, Tat-Seng Chua, and Xuelong Li. 2014. Toward scalable
systems for big data analytics: A technology tutorial. IEEE access 2 (2014),
652–687.

[46] Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube, Kaoutar
El Maghraoui, Anupama Murthi, and Punleuk Oum. 2019. Modelops: Cloud-
based lifecycle management for reliable and trusted ai. In 2019 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 113–120.

[47] GitHub Inc. 2019. Octoverse 2018. https://octoverse.github.com/projects.
[48] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A

Comprehensive Study on Deep Learning Bug Characteristics. In ESEC/FSE’19:
The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE).

[49] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-
ing Deep Neural Networks: Fix Patterns and Challenges. In ICSE’20: The 42nd
International Conference on Software Engineering (Seoul, South Korea).

[50] HV Jagadish. 2015. Big data and science: Myths and reality. Big Data Research
2, 2 (2015), 49–52.

[51] Kathryn Jepsen. 2014. The machine learning community takes on the
Higgs. https://www.symmetrymagazine.org/article/july-2014/the-machine-

https://github.com/matterport/Mask_RCNN
http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle
http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle
https://github.com/SullyChen/Autopilot-TensorFlow
https://github.com/SullyChen/Autopilot-TensorFlow
https://github.com/anonymous-authorss/DS-Pipeline
https://github.com/anonymous-authorss/DS-Pipeline
https://github.com/oarriaga/face_classification
https://github.com/oarriaga/face_classification
https://doi.org/10.1145/3453444
https://github.com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction
https://github.com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction
https://doi.org/10.1145/3368089.3409704
https://github.com/dennybritz/cnn-text-classification-tf
https://doi.org/10.1016/S1389-1286(02)00352-3
https://www.linkedin.com/pulse/4-stages-machine-learning-ml-modeling-cycle-maurice-chang
https://www.linkedin.com/pulse/4-stages-machine-learning-ml-modeling-cycle-maurice-chang
https://github.com/AITTSMD/MTCNN-Tensorflow
https://github.com/AITTSMD/MTCNN-Tensorflow
https://github.com/datitran/object_detector_app
https://nlpers.blogspot.com/2016/08/debugging-machine-learning.html
https://nlpers.blogspot.com/2016/08/debugging-machine-learning.html
https://doi.org/10.1145/2803171
https://doi.org/10.1145/2803171
https://github.com/matthewearl/deep-anpr
https://www.datasciencecentral.com/profiles/blogs/the-lifecycle-of-data
https://www.datasciencecentral.com/profiles/blogs/the-lifecycle-of-data
https://cloud.google.com/ml-engine/docs/tensorflow/ml-solutions-overview
https://cloud.google.com/ml-engine/docs/tensorflow/ml-solutions-overview
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3106237.3106270
https://databricks.com/blog/2017/09/06/build-scale-deploy-deep-learning-pipelines-ease.html
https://databricks.com/blog/2017/09/06/build-scale-deploy-deep-learning-pipelines-ease.html
https://octoverse.github.com/projects
https://www.symmetrymagazine.org/article/july-2014/the-machine-learning-community-takes-on-the-higgs
https://www.symmetrymagazine.org/article/july-2014/the-machine-learning-community-takes-on-the-higgs

The Art and Practice of Data Science Pipelines ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

learning-community-takes-on-the-higgs.
[52] M. Tim Jones. 2018. Data, structure, and the data science pipeline.

https://developer.ibm.com/technologies/data-science/articles/ba-intro-data-
science-1/.

[53] Kaggle. 2021. Kaggle Notebook. www.kaggle.com/competitions.
[54] Kaggle. 2021. Kaggle Notebook. www.kaggle.com/thousandvoices/simple-lstm.
[55] Kaggle. 2021. Kaggle Notebook. https://www.kaggle.com/zfturbo/simple-ru-

baseline-lb-0-9627.
[56] Kaggle. 2021. Kaggle Notebook. www.kaggle.com/seesee/siamese-pretrained-

0-822.
[57] Kaggle. 2021. Kaggle Notebook. www.kaggle.com/willkoehrsen/start-here-a-

gentle-introduction.
[58] Kaggle. 2021. Kaggle Notebook. https://www.kaggle.com/danielbecker/

careervillage-org-recommendation-engine.
[59] Bojan Karlaš, Matteo Interlandi, Cedric Renggli, Wentao Wu, Ce Zhang, Deepak

Mukunthu Iyappan Babu, Jordan Edwards, Chris Lauren, Andy Xu, and Markus
Weimer. 2020. Building continuous integration services for machine learning.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2407–2415. https://doi.org/10.1145/3394486.3403290

[60] Keras. 2021. Keras API Reference. https://keras.io/api/.
[61] Keras. 2021. Scikit-Learn API Reference. https://scikit-learn.org/stable/modules/

classes.html.
[62] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A

Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 1–11.

[63] Samiya Khan, Xiufeng Liu, Kashish A Shakil, and Mansaf Alam. 2017. A sur-
vey on scholarly data: From big data perspective. Information Processing &
Management 53, 4 (2017), 923–944.

[64] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented program-
ming. In ECOOP’97 — Object-Oriented Programming, Mehmet Akşit and Satoshi
Matsuoka (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 220–242.

[65] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The emerging role of data scientists on software development teams. In Pro-
ceedings of the 38th International Conference on Software Engineering. ACM,
96–107.

[66] Namju Kim. 2018. Speech-to-Text-WaveNet : End-to-end sentence level English
speech recognition based on DeepMind’s WaveNet and tensorflow. https://
github.com/buriburisuri/speech-to-text-wavenet.

[67] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin,
and Michael I Jordan. 2013. MLbase: A Distributed Machine-learning System..
In Cidr, Vol. 1. 2–1.

[68] Sara Landset, Taghi M Khoshgoftaar, Aaron N Richter, and Tawfiq Hasanin.
2015. A survey of open source tools for machine learning with big data in the
Hadoop ecosystem. Journal of Big Data 2, 1 (2015), 24.

[69] Deanne Larson and Victor Chang. 2016. A review and future direction of
agile, business intelligence, analytics and data science. International Journal of
Information Management 36, 5 (2016), 700–710.

[70] Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. 1978. Characteristics
of application software maintenance. Commun. ACM 21, 6 (1978), 466–471.

[71] Sin Kit Lo, Qinghua Lu, Chen Wang, Helen Paik, and Liming Zhu. 2020. A
systematic literature review on federated machine learning: From a software
engineering perspective. arXiv preprint arXiv:2007.11354 (2020).

[72] Hui Miao, Amit Chavan, and Amol Deshpande. 2017. Provdb: Lifecycle manage-
ment of collaborative analysis workflows. In Proceedings of the 2nd Workshop
on Human-In-the-Loop Data Analytics. ACM, 7.

[73] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Towards unified
data and lifecycle management for deep learning. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE). IEEE, 571–582.

[74] Microsoft Blog. 2019. What are ML pipelines in Azure Machine Learning
service? https://docs.microsoft.com/en-us/azure/machine-learning/service/
concept-ml-pipelines.

[75] Justin J Miller. 2013. Graph database applications and concepts with Neo4j.
In Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA, Vol. 2324.

[76] Valohai MLOps. 2020. What Is a Machine Learning Pipeline? https://valohai.
com/machine-learning-pipeline/.

[77] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro López
García, Ignacio Heredia, Peter Malík, and Ladislav Hluchỳ. 2019. Machine
Learning and Deep Learning frameworks and libraries for large-scale data
mining: a survey. Artificial Intelligence Review (2019), 1–48.

[78] Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan. 2022. Manas: Min-
ing Software Repositories to Assist AutoML. In ICSE’22: The 44th International
Conference on Software Engineering (Pittsburgh, PA, USA).

[79] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. 2016.
Evaluation of a tree-based pipeline optimization tool for automating data science.
In Proceedings of the Genetic and Evolutionary Computation Conference 2016.

ACM, 485–492.
[80] Alex Paino. 2017. Deep learning models trained to correct input errors in short,

message-like text. https://github.com/atpaino/deep-text-corrector.
[81] Rangeet Pan and Hridesh Rajan. 2020. On Decomposing a Deep Neural Network

into Modules. In ESEC/FSE’2020: The 28th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(Sacramento, California, United States).

[82] Rangeet Pan and Hridesh Rajan. 2022. Decomposing Convolutional Neural Net-
works into Reusable and Replaceable Modules. In ICSE’22: The 44th International
Conference on Software Engineering (Pittsburgh, PA, USA).

[83] Kyubyong Park. 2018. A TensorFlow Implementation of Tacotron: A Fully
End-to-End Text-To-Speech Synthesis Model. https://github.com/Kyubyong/
tacotron.

[84] David Lorge Parnas, Paul C Clements, and David M Weiss. 1985. The modular
structure of complex systems. IEEE Transactions on software Engineering 3
(1985), 259–266.

[85] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2017. Data management challenges in production machine learning. In Proceed-
ings of the 2017 ACM International Conference on Management of Data. ACM,
1723–1726.

[86] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2018. Data Lifecycle Challenges in Production Machine Learning: A Survey.
ACM SIGMOD Record 47, 2 (2018), 17–28.

[87] Line Pouchard. 2016. Revisiting the data lifecycle with big data curation. Inter-
national Journal of Digital Curation 10, 2 (2016), 176–192.

[88] Christian Prehofer. 1997. Feature-oriented programming: A fresh look at ob-
jects. In ECOOP’97 — Object-Oriented Programming, Mehmet Akşit and Satoshi
Matsuoka (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 419–443.

[89] Chuan Qi. 2019. Caffe implementation of Google MobileNet SSD detection
network. https://github.com/chuanqi305/MobileNet-SSD.

[90] Václav Rajlich. 2014. Software evolution and maintenance. In Future of Software
Engineering Proceedings. 133–144.

[91] Muhammad Habib Rehman, Victor Chang, Aisha Batool, and Teh Ying Wah.
2016. Big data reduction framework for value creation in sustainable enterprises.
International Journal of Information Management 36, 6 (2016), 917–928.

[92] Syed Ali Asad Rizvi, Elmarie Van Heerden, Arnold Salas, Favour Nyikosa,
Stephen J Roberts, Michael A Osborne, and Elmer Rodriguez. 2017. Identi-
fying Sources of Discrimination Risk in the Life Cycle of Machine Intelligence
Applications under New European Union Regulations. In 2017 AAAI Spring
Symposium Series.

[93] David Robinson. 2017. The Incredible Growth of Python. https://stackoverflow.
blog/2017/09/06/incredible-growth-python/.

[94] Yuji Roh, Geon Heo, and Steven Euijong Whang. 2019. A Survey on Data
Collection for Machine Learning: a Big Data-AI Integration Perspective. IEEE
Transactions on Knowledge and Data Engineering (2019).

[95] Eragon Ruan. 2019. Scene text detection based on ctpn (connectionist text
proposal network). https://github.com/eragonruan/text-detection-ctpn.

[96] Janine Rüegg, Corinna Gries, Ben Bond-Lamberty, Gabriel J Bowen, Benjamin S
Felzer, Nancy E McIntyre, Patricia A Soranno, Kristin L Vanderbilt, and Kath-
leen C Weathers. 2014. Completing the data life cycle: using information
management in macrosystems ecology research. Frontiers in Ecology and the
Environment 12, 1 (2014), 24–30.

[97] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–12.

[98] Philippe Rémy. 2018. Deep Learning model to analyze a large corpus of clear text
passwords. https://github.com/philipperemy/tensorflow-1.4-billion-password-
analysis.

[99] Shazia Sadiq, Tamraparni Dasu, Xin Luna Dong, Juliana Freire, Ihab F Ilyas,
Sebastian Link, Miller J Miller, Felix Naumann, Xiaofang Zhou, and Divesh
Srivastava. 2018. Data quality: The role of empiricism. ACM SIGMOD Record
46, 4 (2018), 35–43.

[100] David Sandberg. 2018. Face Recognition using Tensorflow. https://github.com/
davidsandberg/facenet.

[101] Carlton E Sapp. 2017. Preparing and architecting machine learning. Gartner
Technical Professional Advice (2017), 1–37.

[102] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine learning:
The high interest credit card of technical debt. (2014).

[103] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. 2015. Hidden technical debt in machine learning systems. In
Advances in neural information processing systems. 2503–2511.

[104] Roald Bradley Severtson. 2017. What is the Team Data Science Pro-
cess? https://docs.microsoft.com/en-us/azure/machine-learning/team-data-
science-process/overview.

[105] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann,
Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska.

https://www.symmetrymagazine.org/article/july-2014/the-machine-learning-community-takes-on-the-higgs
https://developer.ibm.com/technologies/data-science/articles/ba-intro-data-science-1/
https://developer.ibm.com/technologies/data-science/articles/ba-intro-data-science-1/
www.kaggle.com/competitions
www.kaggle.com/thousandvoices/simple-lstm
https://www.kaggle.com/zfturbo/simple-ru-baseline-lb-0-9627
https://www.kaggle.com/zfturbo/simple-ru-baseline-lb-0-9627
www.kaggle.com/seesee/siamese-pretrained-0-822
www.kaggle.com/seesee/siamese-pretrained-0-822
www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction
www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction
https://www.kaggle.com/danielbecker/careervillage-org-recommendation-engine
https://www.kaggle.com/danielbecker/careervillage-org-recommendation-engine
https://doi.org/10.1145/3394486.3403290
https://keras.io/api/
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html
https://github.com/buriburisuri/speech-to-text-wavenet
https://github.com/buriburisuri/speech-to-text-wavenet
https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines
https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines
https://valohai.com/machine-learning-pipeline/
https://valohai.com/machine-learning-pipeline/
https://github.com/atpaino/deep-text-corrector
https://github.com/Kyubyong/tacotron
https://github.com/Kyubyong/tacotron
https://github.com/chuanqi305/MobileNet-SSD
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://github.com/eragonruan/text-detection-ctpn
https://github.com/philipperemy/tensorflow-1.4-billion-password-analysis
https://github.com/philipperemy/tensorflow-1.4-billion-password-analysis
https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

2019. Democratizing data science through interactive curation of ML pipelines.
In Proceedings of the 2019 International Conference on Management of Data. ACM,
1171–1188.

[106] M Shashanka. 2019. What is a Pipeline in Machine Learning? How to create
one? https://medium.com/analytics-vidhya/what-is-a-pipeline-in-machine-
learning-how-to-create-one-bda91d0ceaca.

[107] Mary Shaw and David Garlan. 1996. Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, Inc., USA.

[108] Naoki Shibuya. 2017. Pipelines, Mind Maps and Convolutional Neu-
ral Networks. https://towardsdatascience.com/pipelines-mind-maps-and-
convolutional-neural-networks-34bfc94db10c.

[109] Amir Sinaeepourfard, Jordi Garcia, Xavier Masip-Bruin, and Eva Marín-Torder.
2016. Towards a comprehensive data lifecycle model for big data environ-
ments. In Proceedings of the 3rd IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies. ACM, 100–106.

[110] Sivakar Siva. 2020. The “Generic” Data Science Life-Cycle. https://
towardsdatascience.com/stoend-to-end-data-science-life-cycle-6387523b5afc.

[111] Micah J Smith, Roy Wedge, and Kalyan Veeramachaneni. 2017. FeatureHub:
Towards collaborative data science. In 2017 IEEE International Conference on
Data Science and Advanced Analytics (DSAA). IEEE, 590–600.

[112] Guocong Song. 2017. Tensorflow-based Recommendation systems. https://
github.com/songgc/TF-recomm.

[113] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J Franklin,
and Benjamin Recht. 2017. Keystoneml: Optimizing pipelines for large-scale
advanced analytics. In 2017 IEEE 33rd international conference on data engineering
(ICDE). IEEE, 535–546.

[114] Victoria Stodden. 2020. The data science life cycle: a disciplined approach to
advancing data science as a science. Commun. ACM 63, 7 (2020), 58–66.

[115] Marvin Teichmann. 2018. A Kitti Road Segmentation Model Implemented in
Tensorflow. https://github.com/MarvinTeichmann/KittiSeg.

[116] Stephen Todd and David Dietrich. 2017. Computing resource re-provisioning
during data analytic lifecycle. US Patent 9,619,550.

[117] Ehsan Toreini, Mhairi Aitken, Kovila Coopamootoo, Karen Elliott, Carlos Gon-
zalez Zelaya, and Aad van Moorsel. 2020. The relationship between trust in
AI and trustworthy machine learning technologies. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency. 272–283.

[118] Andrew Bagshaw Trieu. 2018. Real-time object detection and classification.
https://github.com/thtrieu/darkflow.

[119] Cagatay Turkay, Nicola Pezzotti, Carsten Binnig, Hendrik Strobelt, Barbara
Hammer, Daniel A Keim, Jean-Daniel Fekete, Themis Palpanas, Yunhai Wang,
and Florin Rusu. 2018. Progressive data science: Potential and challenges. arXiv
preprint arXiv:1812.08032 (2018).

[120] TomVanDerWeide, Dimitris Papadopoulos, Oleg Smirnov, Michal Zielinski, and
Tim Van Kasteren. 2017. Versioning for end-to-end machine learning pipelines.
In Proceedings of the 1st Workshop on Data Management for End-to-End Machine
Learning. ACM, 2.

[121] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver
agreement: the kappa statistic. Fam med 37, 5 (2005), 360–363.

[122] Ben Wagner. 2020. Accountability by design in technology research. Computer
Law & Security Review 37 (2020), 105398.

[123] Zhiyuan Wan, Xin Xia, David Lo, and Gail C Murphy. 2019. How does machine
learning change software development practices? IEEE Transactions on Software
Engineering (2019).

[124] Dakuo Wang, Justin D Weisz, Michael Muller, Parikshit Ram, Werner Geyer,
Casey Dugan, Yla Tausczik, Horst Samulowitz, and Alexander Gray. 2019.
Human-AI collaboration in data science: Exploring data scientists’ perceptions
of automated AI. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (2019), 1–24.

[125] Jiawei Wang, Li Li, and Andreas Zeller. 2021. Restoring Execution Environ-
ments of Jupyter Notebooks. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1622–1633.

[126] MohammadWardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022. Deep-
Diagnosis: Automatically Diagnosing Faults and Recommending Actionable
Fixes in Deep Learning Programs. In ICSE’22: The 44th International Conference
on Software Engineering (Pittsburgh, PA, USA).

[127] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault
Localization for Deep Neural Networks. In ICSE’21: The 43nd International
Conference on Software Engineering (Virtual Conference).

[128] Hadley Wickham. 2019. Data science: how is it different to statistics? IMS
Bulletin 48 (2019).

[129] Jeannette M Wing. 2019. The Data Life Cycle. Harvard Data Science Review
(2019).

[130] Rüdiger Wirth and Jochen Hipp. 2000. CRISP-DM: Towards a standard process
model for data mining. In Proceedings of the 4th international conference on the
practical applications of knowledge discovery and data mining. Citeseer, 29–39.

[131] Christof Wolf, Dominique Joye, Tom W Smith, and Yang-chih Fu. 2016. The
SAGE handbook of survey methodology. Sage.

[132] Max Woolf. 2018. Automatically "block" people in images (like Black Mirror) us-
ing a pretrained neural network. https://github.com/minimaxir/person-blocker.

[133] Mehmet Yildiz. 2020. Big Data Lifecycle Management. https://medium.com/
technology-hits/big-data-lifecycle-management-629dfe16b78d.

[134] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Moham-
mad Norouzi, and Quoc V Le. 2018. A Tensorflow implementation of QANet for
machine reading comprehension. https://github.com/NLPLearn/QANet.

[135] Yuyu Zhang,MohammadTaha Bahadori, Hang Su, and Jimeng Sun. 2016. FLASH:
fast Bayesian optimization for data analytic pipelines. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 2065–2074.

[136] Yingfeng Zhang, Shan Ren, Yang Liu, Tomohiko Sakao, and Donald Huisingh.
2017. A framework for Big Data driven product lifecycle management. Journal
of Cleaner Production 159 (2017), 229–240.

[137] Charlie Bickerton Zhilin Yang, Zihang Dai. 2019. XLNet: Generalized Autore-
gressive Pretraining for Language Understanding. https://github.com/zihangdai/
xlnet.

[138] Baifan Zhou, Yulia Svetashova, Tim Pychynski, Ildar Baimuratov, Ahmet Soylu,
and Evgeny Kharlamov. 2020. SemFE: facilitating ML pipeline development
with semantics. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. 3489–3492.

[139] Linda Zhou. 2019. How to Build a Better Machine Learning Pipeline.
https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-
learning-pipeline.

https://medium.com/analytics-vidhya/what-is-a-pipeline-in-machine-learning-how-to-create-one-bda91d0ceaca
https://medium.com/analytics-vidhya/what-is-a-pipeline-in-machine-learning-how-to-create-one-bda91d0ceaca
https://towardsdatascience.com/pipelines-mind-maps-and-convolutional-neural-networks-34bfc94db10c
https://towardsdatascience.com/pipelines-mind-maps-and-convolutional-neural-networks-34bfc94db10c
https://towardsdatascience.com/stoend-to-end-data-science-life-cycle-6387523b5afc
https://towardsdatascience.com/stoend-to-end-data-science-life-cycle-6387523b5afc
https://github.com/songgc/TF-recomm
https://github.com/songgc/TF-recomm
https://github.com/MarvinTeichmann/KittiSeg
https://github.com/thtrieu/darkflow
https://github.com/minimaxir/person-blocker
https://medium.com/technology-hits/big-data-lifecycle-management-629dfe16b78d
https://medium.com/technology-hits/big-data-lifecycle-management-629dfe16b78d
https://github.com/NLPLearn/QANet
https://github.com/zihangdai/xlnet
https://github.com/zihangdai/xlnet
https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline
https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline

The Art and Practice of Data Science Pipelines ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Labeled data science pipelines from the subject studies. ACQ: Data acquisition, PRP: Data preparation, STR: Data
storage, FTR: Feature engineering, MDL: Modeling, TRN: Training, EVL: Evaluation, PRD: Prediction, INT: Interpretation,
CMN: Communication, DPL: Deployment.

Overall goal: Describe/propose pipeline, Survey/compare/review, DS optimization, Introduce new method/application
Preprocessing Modeling Post-processing InvolvesType References ACQ PRP STR FTR MDL TRN EVL PRD INT CMN DPL Cyber Physical Human

Olson et al., 2016 [79] - - - - - -
Miao et al., 2017b [73] - - - - - - -
Garcia et al., 2018 [36] - - - - - - -
Hong and Hunter, 2017 [44] - - - - - - - - -
Microsoft Blog, 2019 [74] - - - - -
Zhou, 2019 [139] - - - - - - - -
Shibuya, 2017 [108] - - - - - - - - - -
Polyzotis et al., 2018 [86] - - - - - - -
Roh et al., 2019 [94] - - - - - - -
Miao et al., 2017a [72] - - - - - - - - - -
Sparks et al., 2017 [113] - - - - - - - - -
Guo, 2017 [41] - - - - - -
Baylor et al., 2017 [12] - - - - - -
Abadi et al., 2016 [1] - - - - - - - - -
Chilimbi et al., 2014 [22] - - - - - - - - -
Kraska et al., 2013 [67] - - - - - - -
Sculley et al., 2015 [103] - - - - - - - - -
Chang, 2017 [19] - - - - -
Google Cloud Blog, 2019 [40] - - - - - - -
Amershi et al., 2019 [6] - - - - -
Van Der Weide et al., 2017 [120] - - - - - - - -
Hill et al., 2016 [42] - - - - - - - - -
Shang et al., 2019 [105] - - - - - - - - - -
Zhang et al., 2016 [135] - - - - - - - - - -
Gil et al., 2018 [38] - - - - - - - -
Sadiq et al., 2018 [99] - - - - - -
Zhou et al., 2020 [138] - - - - - -
Aggarwal et al., 2019 [4] - - - - - - - -
Toreini et al., 2020 [117] - - - - - - -
Ashmore et al., 2021 [9]
Shashanka, 2019 [106] - – – – –
MLOps, 2020 [76] - - – – – –

M
ac
hi
ne

le
ar
ni
ng

pr
oc
es
s

Daumé III, 2016 [25] - - - - - - -

Todd and Dietrich, 2017 [116] - - - - -
Zhang et al., 2017 [136] - - - - - -
Sapp, 2017 [101] -
Landset et al., 2015 [68] - - - - - - -
Polyzotis et al., 2017 [85] - - - - - - - - -
Hu et al., 2014 [45] - - - - - - - -
Demchenko et al., 2012 [27] - - - - - - - - -
Khan et al., 2017 [63] - - - - - -
El Arass and Souissi, 2018 [32] - - - – – - -
Hummer et al., 2019 [46] - - - - -
Yildiz, 2020 [133] - - - -
Glen, 2019 [39] - - - - - - -

Bi
g
da
ta

m
an
ag
em

en
t

Jones, 2018 [52] - - - – - -

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sumon Biswas, Mohammad Wardat, and Hridesh Rajan

Preprocessing Modeling Post-processing InvolvesType References ACQ PRP STR FTR MDL TRN EVL PRD INT CMN DPL Cyber Physical Human
Pouchard, 2016 [87] - - - - - - - -
Severtson, 2017 [104] - -
Berman et al., 2018 [13] - - - - -
Agarwal, 2018 [3] - - -
Nguyen et al., 2019 [77] - - - - - -
Rüegg et al., 2014 [96] - - - - - - - - -
Gandomi and Haider, 2015 [35] - - - - - -
Ball, 2012 [11] - - - - - - - - -
Wing, 2019 [129] - - - - - -
Rehman et al., 2016 [91] - - - - - - - -
Chen and Zhang, 2014 [20] - - - - - - - - -
Jagadish, 2015 [50] - - - - - -
Larson and Chang, 2016 [69] - - - - - -
Rizvi et al., 2017 [92] - - - - - - -
Demchenko et al., 2016 [26] - - - - -
Wolf et al., 2016 [131] - - - - - - - -
Sinaeepourfard et al., 2016 [109] - - - - - - -
Kim et al., 2016 [65] - - - -
Fisher, 2017 [33] - - - - -
Turkay et al., 2018 [119] - - - - - -
Smith et al., 2017 [111] - - - - - - - -
Wang et al., 2019 [124] - - - - - -
Lo et al., 2020 [71] - - - - -
Siva, 2020 [110] - - -

Te
am

pr
oc
es
s

Stodden, 2020 [114] -

	Abstract
	1 Introduction
	2 DS Pipeline in Theory
	2.1 Methodology
	2.2 Representative Pipeline in Theory
	2.3 Organization of Pipeline Stages in Theory
	2.4 Characteristics of the Pipelines in Theory

	3 DS Pipeline in-the-Small
	3.1 Methodology
	3.2 Representative Pipeline in-the-Small
	3.3 Pipeline Organization in the Small
	3.4 Characteristics of Pipelines in-the-Small

	4 DS Pipeline in-the-Large
	4.1 Methodology
	4.2 Representative Pipeline in-the-Large
	4.3 Organization of DS Pipeline in-the-Large
	4.4 Characteristics of Pipelines in-the-Large

	5 Discussion
	6 Threat to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

