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ABSTRACT

Deep Neural Networks (DNNs) are used in a wide variety of ap-

plications. However, as in any software application, DNN-based

apps are a�icted with bugs. Previous work observed that DNN bug

�x patterns are di�erent from traditional bug �x patterns. Further-

more, those buggy models are non-trivial to diagnose and �x due

to inexplicit errors with several options to �x them. To support

developers in locating and �xing bugs, we propose DeepDiagnosis,

a novel debugging approach that localizes the faults, reports error

symptoms and suggests �xes for DNN programs. In the �rst phase,

our technique monitors a training model, periodically checking for

eight types of error conditions. Then, in case of problems, it reports

messages containing su�cient information to perform actionable

repairs to the model. In the evaluation, we thoroughly examine 444

models – 53 real-world from GitHub and Stack Over�ow, and 391

curated by AUTOTRAINER. DeepDiagnosis provides superior accu-

racy when compared to UMLUAT and DeepLocalize. Our technique

is faster than AUTOTRAINER for fault localization. The results

show that our approach can support additional types of models,

while state-of-the-art was only able to handle classi�cation ones.

Our technique was able to report bugs that do not manifest as

numerical errors during training. Also, it can provide actionable in-

sights for �x whereas DeepLocalize can only report faults that lead

to numerical errors during training. DeepDiagnosis manifests the

best capabilities of fault detection, bug localization, and symptoms

identi�cation when compared to other approaches.

CCS CONCEPTS

• Computing methodologies→ Neural networks; • Software

and its engineering → Software testing and debugging.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are becoming increasingly popular

due to their successful applications in many areas, such as health-

care [27, 34], transportation [43], and entertainment [21]. But, the

intrinsic complexity of deep learning apps requires that developers

build DNNs within their software systems to facilitate integration

and development with other applications. The construction of such

systems requires popular Deep Learning libraries [18, 32].

Despite the increasing popularity and many successes for using

Deep Learning libraries and frameworks, DNN applications still

su�er from reliability issues [25, 26, 47]. These faults are harder to

detect and debug when compared to traditional software systems,

as the bugs are often obfuscated within the DNNs. Therefore, it

is important and necessary to diagnose their faults, and provide

actionable �xes. To that end, software engineering research has

recently focused on improving the reliability of DNN-based soft-

ware. For instance, there have been studies on characterizing DNN

bugs [25, 26, 47], on testing frameworks for deep learning [42],

on debugging deep learning using di�erential analysis [30], and

�xing DNNs [15, 46, 48]. There are also frameworks and tools for

inspecting and detecting unexpected behavior in DNNs. However,

they require that specialists verify the visualization, which is only

available upon completing the training phase [3–5, 31, 39].

Due to the complexity of using existing frameworks to debug

and localize faults in deep learning software, recent SE research

has introduced techniques for automatically localizing bugs [44,

49]. DeepLocalize performs dynamic analysis during training to

localize bugs by monitoring values produced at the intermediate

nodes of the DNNs [44]. If there is a numerical error, then this

approach traces that back to the faulty layer. DEBAR [49] is a static

analysis tool that detects numerical errors in the DNNs. While

both approaches have signi�cantly advanced the state of the art in

561

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)



ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan

debugging DNNs, they do not detect bugs that manifest as trends

of values (e.g. vanishing gradient, exploding gradient, accuracy not

increasing) and do not o�er possible �xes.

We propose DeepDiagnosis (DD), an approach for localizing

faults, reporting error symptoms, diagnosing problems, and pro-

viding suggestions to �x structural bugs in DNNs. Our approach

introduces three new symptoms of structural bugs and de�nes new

rules to map fault location to its root cause in DNN programs. We

implemented DD as a dynamic analysis tool and compared and

contrasted it against state-of-the-art approaches. DD outperforms

UMLAUT [38] and DeepLocalize [44] in terms of e�ciency and

AUTOTRAINER in terms of performance [48]. For example, assume

the unchanged weight symptom, which occurs when the weights in

the network are not changing for several iterations. In that case,

DD would identify the root cause as that the learning rate is too low

or that the optimizer is incorrect and then recommend a �x.

In summary, this paper makes the following contributions:

• We study di�erent types of symptoms and propose a dynamic

analysis for detecting errors and recommending �xes.

• We introduced DeepDiagnosis (DD) the reference implemen-

tation of our approach.

• We evaluated DD against SoTA. We found that DD is more

e�cient than UMLAUT [38] and DeepLocalize [44]. Also,

DD has better performance than AUTOTRAINER [48].

• We provide a set of 444 models that practitioners can use to

evaluate their fault localization approaches.

• We make DD available, its source code, evaluation results,

and the problem solutions for 444 buggy models at [6].

To the best of our knowledge, DeepDiagnosis provides the �xed

location and the concrete �x at the DNN source code level. Our

approach detects problems during the training process, and can

handle a broad class of problems, e.g., compared to DeepLocal-

ize [44], that do not manifest themselves as numerical errors. It

is challenging to provide a correct �x for an observed symptom.

Islam et al. [26] show that solving a single problem may lead to

additional ones. DeepDiagnosis addresses the issue by building the

connection between symptoms to root causes. To obtain suitable

solutions, we propose a Decision Tree to map symptoms to �x.

The rest of the paper is organized as follows: §2 describes the

motivation of our approach. §3 describes our dynamic failure symp-

toms detection algorithm. §4 describes the evaluation of our ap-

proach compared with prior works. §5 discusses the threats to

validity. §6 discusses related works, and §7 concludes and discusses

future work.

2 A MOTIVATING EXAMPLE

In this section, we motivate our work by providing an example

to illustrate the complexity of localizing faults and reporting their

symptoms in DNN programs.

1 model = S e q u e n t i a l ( )

2 model . add ( Dense ( 1 2 8 , 5 0 ) )

3 model . add ( A c t i v a t i o n ( ' r e l u ' ) )

4 model . add ( Dropout ( 0 . 2 ) )

5 model . add ( Dense ( 5 0 , 5 0 ) )

6 model . add ( A c t i v a t i o n ( ' r e l u ' ) )

7 model . add ( Dropout ( 0 . 2 ) )

8 model . add ( Dense ( 5 0 , 1 ) )

9 model . add ( A c t i v a t i o n ( ' so f tmax ' ) )

10 model . compi l e ( l o s s = ' b i n a r y _ c r o s s e n t r o py ' , o p t im i z e r =RMSprop ( ) )

11 model . f i t (X , Y , b a t c h _ s i z e , epoch , v a l i d a t i o n _ d a t a = ( X_te s t , Y _ t e s t ) )

Listing 1: Bad Result for Simple Model [2]

Consider the code snippet in Listing 1 from Stack Over�ow [2]

with an example of a DNN. This model showed erratic behavior

during training and returns bad results. At line 1, the developer

constructed a sequential model and added a dense input layer at line

2 with the activation functions relu speci�ed at line 3. Then the

developer added a dropout layer at lines 4 and 7. Lines 5 and 8 are

dense hidden layers with the activation functions relu and softmax

speci�ed at lines 6 and 9, respectively. The developer then compiled

the model at line 10 and trained it using the fit() function at

line 11. When compiling, the developer must specify additional

properties, such as loss function and optimizer. In this example,

the developer used as loss binary_crossentropy and optimizer

RMSprop() at line 10. Finally, at line 11, the developer speci�es the

training data, batch_size, epoch, and validation_data.

The developer noticed that the DNN program was providing

bad accuracy and could not diagnose the problem nor �x it (Stack

Over�ow post [2]) while following the Keras MNIST example [18].

The main issue with the code in Listing 1 is that it handles a

binary classi�cation problem, and therefore it should not use the

activation function softmax in line 9. As the softmax works for

multi-class classi�cations problems. Instead, it should use sigmoid,

as it is the best suited for binary classi�cation and will provide the

best accuracy for the task.

Table 1: Result from Motivating Example
Approach Ouput

UMLAUT No Output

DeepLocalize layer 7: Numerical Error in delta Weights

AUTOTRAINER

solution,times,issue_list,train_result,describe

1. selu,0,[’relu’],0.5,Using ’SeLU’ activation in each layers’

2. bn,0,[’relu’],0.5,Using ’BatchNormalization’

...

Unsolved.. For more details [6]

DeepDiagnosis
Layer 7: Numerical Error in delta Weights

Change the activation function at layer: 8

The current state-of-the-art for DNN fault localization is limited

in terms of speed, accuracy, and e�ciency. Table 1 summarizes the

analysis results from three tools (DeepLocalize [44], UMLUAT [38],

AUTOTRAINER [48]) and our approach DeepDiagnosis to diag-

nose the DNN model in Listing 1. To apply UMLUAT for the above

example, we made semantic changes that were validated by the

authors [38]. After 104.65 seconds, the training was terminated,

with UMLAUT not reporting any problems. To apply DeepLocalize,

we followed the instructions in the GitHub repository [7]. DeepLo-

calize prints the following message after 2.14 seconds: “Layer 7:

Numerical Error in deltaWeights.” This message indicates that there

is a numerical error in the backpropagation stage during training.

Indicating fault location, but it does not help developers to �x the

problem. To apply AUTOTRAINER, we followed the instructions

in the GitHub repository [8]. After performing the training phase,

AUTOTRAINER did not solve the problem and took 495.83 seconds.

Speci�cally, AUTOTRAINER detects a Dying ReLU symptom, but it

does not provide the fault location – whether it is in line 3 or 6. AU-

TOTRAINER tries to automatically �x the issue by trying di�erent
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Figure 1: Overview of DeepDiagnosis.

strategies (i.e., substituting activation functions, adding batch nor-

malization layer, and substituting initializer), which, unfortunately,

are unsuccessful.

Our approach DeepDiagnosis correctly reports the fault location

and its symptoms after 35.03 seconds. Also, it provides a suggestion

to perform a �x in the form of a message. Speci�cally, DeepDiag-

nosis reports that the bug is located in the backpropagation stage

of layer 7 at line 8. Also, it prints out a numerical message: “Error

in delta Weights”, which indicates the type of the symptom. It also

reports that the root cause is the activation function in layer 8 at

line 9 (softmax). Finally, it answers the developer’s question – there

is indeed a problem with the activation function in the last layer

and not in the training dataset.

3 APPROACH

In this section, we provide an overview of our approach for fault

localization. We provide descriptions of failure symptoms and their

root causes. Also, we describe the process of mapping symptoms

to their root causes.

Our approach monitors the key values during training, like

weights and gradients. During training, it analyzes the recorded

value to detect symptoms and determine whether a training prob-

lem exists. If a symptom is detected, our approach invokes a De-

cision Tree to diagnose/repair information based on a set of pre-

determined rules. Otherwise, the training will terminate with the

trained model and report the model is correct.

3.1 An Overview

Figure 1 shows an overview of our approach for fault localiza-

tion, DeepDiagnosis, and for suggesting locations �x. DD starts

by receiving as input the initial model architecture with a train-

ing dataset and passing our callback method as a parameter to the

fit() method (Figure 1 left component). Keras callbacks are a set

of methods that enable developers to check their model’s interme-

diate features (e.g., weights, gradients). Also, callbacks enable the

developers to inspect the model’s behavior during training. Our

callback approach is inspired by prior work [14, 44]. In particular,

our callbacks allow capturing and recording the key values (i.e.,

weight, gradient, etc.) during feed-forward and backward prop-

agation stages (Figure 1 middle component). Then DD applies a

dynamic detector during training to report di�erent symptoms at

di�erent stages based on error conditions (see Section 3.2 for more

details). If DD detects a symptom, it further analyzes the recorded

key values to determine the input model’s probable location for

the �x (Figure 1 right component). Finally, DD reports the symp-

tom type, which layers and stage the symptom was detected, and

suggests a location �x.

3.2 Failure symptoms and root causes

Our goal is to detect failure symptoms as soon as possible during

development. So that if the model is incorrect, developers would

not have to wait until the end of the training to �nd that model

has low accuracy, thus wasting computational resources. To that

end, we collected 8 types of failure symptoms and their root causes

from previous work in the AI research community [23, 24, 33, 40].

We provide more details of each of the symptoms and their root

causes below.

3.2.1 Symptom #1 Dead Node. The Dead Node symptom takes

place when most of a neural network is inactive. For example,

assume that most of the neurons of a DNN are using the ReLU

activation function, which returns zero when receiving any nega-

tive input. If the majority of the neurons receive negative values

(e.g., due to a high learning rate), they would become inactive and

incapable of discriminating the input. The DNN would end up with

poor performance [48]. To identify this symptom, we compute the

percentage of inactive neurons per layer. If the majority of the

neural network is inactive, then we call it Dead Node.

Root Causes: This problem is likely to occur when [16]: (1)

learning rate is too high/low. (2) there is a large negative bias. (3)

improper weight or bias initialization.

3.2.2 Symptom #2 Saturated Activation. The Saturated Acti-

vation symptom takes place when the input to the logistic activation

function (e.g., tanh or sigmoid) reached either a very large or a very

small value [23]. At the saturated point, the function results would

equal zero or be close to zero, thus leading to no weight updates.

Our experiments show [6] that the behavior of sigmoid and tanh

have a minimum saturated point at x=-5 and a maximum saturated

point at x=5. Previous work showed that the saturated function

a�ects the network’s performance and makes the network di�cult

to train [23, 45].

Root Causes: This problem is likely to occur when [19]: (1) the

input data are too large or too small; (2) improper weight or bias

initialization; (3) learning rate is too high or too small.

3.2.3 Symptom #3 Exploding Tensor: The Exploding Tensor

symptom takes place when the tensors’ values become too large,

leading to numerical errors in a feed-forward stage. For example, if
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Table 2: Methods for Detecting Failure Symptoms
ID Method Name Input Output Description

S1 ExplodingTensor () Weight, Δ

Weight, and
Layer Output

T | F The procedure detects any numerical error such as in�nite, NaN (Not a Number), or zero. To that end, it computes
the input’s mean value. Then, it checks for a numerical error is detected. In case of error, it returns True,
otherwise False.

S2 UnchangeWeight () Weight, Δ

Weight, Layer
Output

T | F The procedure stores the value for a given number of steps (N = 5). Then it compares the value for the current
step with the mean value stored in for previous (N = 5) steps. The evaluation takes place for every given number
of steps. The procedure returns True if the value is not changing, otherwise False.

S3 SaturatedActivation () Input of Ac-
tivation Func-
tion

T | F The procedure detects if the tanh or sigmoid activation functions, or other logistic functions are becoming
saturated. It does so by checking if their input has reached either a maximum or minimum value. Saturated
functions’ derivatives would be equal to zero at those points. The procedure counts the activity of a close or
greater node than to the (Max_Threshold = 5) or less than (Min_Threshold = -5) of the activation function; If the
percentage of total activity nodes is greater than the (Threshold_Layer = 0.5) percent of the nodes are saturated,
the procedure returns True, otherwise False.

S4 DeadNode () Relu Output T | F This procedure takes the output of Recti�ed Linear Unit (ReLU) activation function as input, then computes
how many inactive nodes dropped below (Threshold = 0.0). If the percentage of inactive nodes is greater than
(Layer_Threshold = 0.7) it returns True, otherwise False.

S5 OutofRange () Output of last
layer

T | F The procedure detects if the activation function’s output is becoming out of range for the labeling training
dataset Y. To that end, it �nds the range (maximum and minimum) of the activation function’s output. Then
compare it with Y labeling data. If the value is out of the boundary, the procedure returns True, otherwise False.

S6 LossNotDecreasing () Loss Value T | F The procedure stores the loss value for every number of steps (N = 5), then compares the loss value for the
current step with the mean value of losses stored in the previous (N = 5) steps. The evaluation happens for every
number of steps (N = 5). The procedure returns True if the loss is not decreasing, otherwise False.

S7 AccuracyNotIncreasing () Accuracy
Value

T | F The procedure stores the accuracy value for every number of steps (N = 5), then compares the accuracy value
for the current step with the mean value of accuracy stored in previous (N = 5) steps. The evaluation happened
every number of steps (N = 5). The procedure returns True if accuracy is not increasing, otherwise False.

S8 VanishingGradient () Delta Weight T | F This procedure detects the Vanishing Gradient problem by checking the gradients when they become extremely
small or drop to zero. The procedure computes the mean of the gradients’ absolute values, then checks if their
means drop below a speci�ed (Threshold = 0.0000001). In the case of a positive detection, it returns True,
otherwise False.

This table shows procedures descriptions from [1, 10, 20, 37, 48]. T |F indicates that the procedure returns True | False respectively.

Table 3: Methods for Mapping from Failure Symptoms to Location Fix
No Method Name Input Output Description

C1 ImproperData () Training Data T | F Check if the maximum and minimum value of training dataset lie within speci�c range of [-1, 1]. If the value
within the boundary, the procedure returns True. Otherwise, False.

C2 WeightInitialization () Weight for
each layer

T | F This procedure checks the variance of weight inputs across layers to determine if a neural network has been poorly
initialized. The procedure checks if the variance of weights per layer is equal or very close to 0 (Min_Threshold
= 0.00001), or if it exceeds the (Min_Threshold = 10), the procedure returns True. Otherwise, False.

C3 TuneLearn () Learning rate,
Weight, and Δ

Weight

L | H The procedure evaluates the learning rate heuristically by computing the ratio of the norm of the gradient
weight to the norm of weight for each layer. This ratio should be somewhere around (Learn_Threshold =
1e-3). If it is lower than (Learn_Threshold = 1e-3), then the learning rate might be too Low. If it is higher than
(Learn_Threshold = 1e-3), the learning rate is likely too High.

This table is showing all the functionality of the procedures. T |F indicates the procedure return True | False respectively. L |H indicates the procedure return

Low | High respectively. We borrowed these methods from existing literature [1, 10, 20, 37, 48]

the weight or output layer grows exponentially more than expected,

becoming either in�nite or NaN (not a number). Eventually, this

problem causes a numerical error, making it impossible for the

model to learn.

Root Causes: This problem is likely to occur when [20, 28]: (1)

the learning rate is too large; (2) there exist improper weight or

bias initialization, or improper input data.

3.2.4 Symptom #4 Accuracy Not Increasing & Symptom #5

Loss Not Decreasing. Both symptoms Accuracy Not Increasing

and Loss Not Decreasing are very similar. The Accuracy Not In-

creasing symptom takes place when the accuracy of a target model

is not increasing for N steps, but instead, it is decreasing or �uctu-

ating during training. While for the Loss Not Decreasing symptom,

the loss metric is the one that is not decreasing for N steps but

is �uctuating. These behaviors indicate that the network will not

achieve high performance. These symptoms are often caused by the

incorrect selection of DNN hyperparameters [37], such as loss func-

tion, activation function for the last layer, learning rate, optimizer,

or batch size.

Root Causes: This problem is likely to occur when [20, 28]: (1)

there exist improper training data; (2) the number of layers is too

large/small; and (3) the learning rate is very high/low; and (4) there

exist incorrect activation functions.

3.2.5 Symptom#6UnchangedWeight. TheUnchangedWeight

symptom takes place when the DNN weights do not have a no-

ticeable in�uence on the output layers. This behavior leads to un-

changing parameters and network stacks, which further prevents

the model from learning [19, 44].

Root Causes: This problem is likely to occur when [19, 44]: (1)

learning rate is very low; (2) the optimizer is incorrect; (3) there

exist incorrect weights initialization; and (4) there exists incorrect

loss/activation at the last layer.

3.2.6 Symptom #7 Exploding Gradient. This problem occurs

during the back-propagation stage. In it, gradients are growing

exponentially from the last layer to the input layer, which leads to

non-�nite values, either in�nite or NaN (not a number). This issue

makes learning unstable and sometimes even impossible. Conse-

quently, updating the weights becomes very hard, and the training

model ends up with a high loss or very low accuracy values.
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Root Causes: This problem is likely to occur when [20, 28]: (1)

the learning rate is very high; (2) there is an improper weight or

bias initialization; (3) there are improper data input; and (4) the

batch size is very large.

3.2.7 Symptom #8 Vanishing Gradient. The Vanishing Gradi-

ent problem occurs during the backward stage. When computing

the gradient of the loss concerning weights using partial deriva-

tives, the value of the gradient turns out to be so small or drops

to zero. The problem causes major di�culty if it reaches the input

layer, which will prevent the weight from changing its value during

training. Since the gradients control how much the network learns

during training, the neural network will end up without contribut-

ing to the prediction task or leading to poor performance [41, 48].

Root Causes: This problem is likely to occur when [29]: (1) the

network has too many layers; (2) the learning rate is low; (3) the

hidden layers improperly used Tanh or Sigmoid; and (4) there exists

the incorrect weight initialization problem.

3.3 Detecting Failure Symptoms

In Table 2 from Method S1 to S8, we describe the failure symptoms

discussed in Section 3.2, using its name, input/output, and the de-

tection procedure. Algorithm 1 shows an example of a dynamic

analysis procedure, which DeepDiagnosis uses to detect failure

symptoms during training (Table 2 Description). Also, the Algo-

rithm 1 reports failure locations, such as in which layer and phases

(i.e., feed-forward and backward propagation). In case a failure is

detected, the algorithm will trigger the Mapping() procedure to

identify the location in the original DNN source code. By doing so,

it will localize the bug and determine the optimal �x.

At line 1, Algorithm 1 iterates over the training epochs, with the

training dataset divided into batches. Line 3 shows the division of

the training dataset into a mini-batch. On lines 2-28, the algorithm

runs one batch of the training dataset before updating the internal

model parameters. The neural network can be divided into two

stages: First, the forward stage, in which the algorithm performs

dynamic analysis and symptom detection, including Numerical

Error, Dead node, Saturated Activation, and Out of Range, at lines

4-12. Second, the backward stage, in which the algorithm performs

dynamic analysis to detect additional symptoms, such as Numerical

Error, Vanishing Gradient, and Unchanged weight at lines 23-28.

3.3.1 Feed-forward stage. At lines 5 & 6 of the Algorithm 1, it

computes the output of a feed-forward before and after applying

the activation function. At line 7, it invokes the ExplodingTensor()

procedure (S1 in Table 2) to determine if the output contains a nu-

merical error obtained from the output value before/after applying

activation function, respectively. If there is an error, the algorithm

reports the NS message as shown in Table 5. Next, it invokes the

Mapping() procedure from the decision tree in Figure 2 by providing

the symptom (NS), location, stage (FW), and layer (L). The decision

tree returns the best actionable �x for the model (see Section 3.4

for more details).

At line 8, the Algorithm 1 invokes the UnchangeWeight() (S2 in

Table 2) procedure to detect whether the output before/ after apply-

ing the activation function is no longer changing across steps. If the

procedure indicates that the value does not change for N iterations,

we follow [44] and set N=5. The UnchangeWeight() procedure can

be applied either to the output before/after the activation function.

The algorithm reports the message UCS, as shown in Table 5. At line

9, the Algorithm invokes the SaturatedActivation () procedure (S3

in Table 2) for the layer that has a logistic activation function (i.e.,

tanh or sigmoid) to determine if the layer is becoming saturated.

This procedure takes two arguments, the value before applying the

activation function (V_1) and the name of the activation function

(V_2.name). If the procedure determines that the layer is saturated,

the algorithm reports the message SAS as shown in Table 5.

At line 10, the Algorithm 1 invokes the DeadNode() procedure

(S4 in Table 2) to check the layers that use the Recti�ed Linear

Unit (ReLU) activation function. The goal is to determine if the

output after applying the activation function has dropped below

a threshold [48]. This procedure is invoked only after applying

the activation function. The algorithm reports the message DNS

as shown in Table 5 when the error is detected. Similarly, at line

11, it invokes the OutofRange() procedure (S5 in Table 2) in the

last layer. The goal is to determine if the developer has chosen the

correct activation function. The algorithm reports the message ORS

as shown in Table 5 if the error is detected.

In lines 13 & 15 the algorithm interprets and validates how well

the model is doing by computing the loss and accuracy metrics,

respectively. Then it determines if there is any numerical error in

those metrics at lines 14 & 16, respectively. The algorithm invokes

LossNotDecreasing() and AccuracyNotIncreasing() (S6 & S7 in Ta-

ble 2) to check if the loss or the accuracy has not changed for a long

time. In both cases, the algorithm reports a message LNDS or ANIS

as shown in Table 5.

3.3.2 Back propagation stage. During this stage, the Algorithm 1

computes the gradient of loss function Δ Weight for the weight

by chain rules in each iteration. At line 24, the algorithm invokes

Backward() to apply stochastic gradient descent, and this function

returns the Weight and Δ Weight in each iteration. At line 25,

the algorithm invokes the VanishingGradient() procedure (S8 in

Table 2) and passes Δ Weight to check if the gradients become

extremely small or close to being zero. In the same way, at line

26, the algorithm can determine if there is a numerical error in

the Weight or the gradient weight in each layer by invoking the

ExplodingTensor() procedure (S1 in Table 2). The backpropagation

algorithmworks if theWeight is updated using the gradient method

and the loss value keeps reducing, to check if the backpropagation

works e�ectively. In the backward propagation, we also invoke

the UnchangeWeight() procedure (S2 in Table 2) to detect whether

the weight or Δ Weight is no longer changing across steps. If any

procedure decides that there is an issue, then the algorithm will

return a message to indicate the type of symptom as shown in

Table 5, L represents a faulty layer number. Then the algorithm

invokes Mapping() and passes the symptom, location, and layer

to �nd the best actionable change to �x the issue in the model.

Finally, if the algorithm did not detect any type of symptom, it will

terminate after �nishing the training at line 29 and print a message

indicating that there is no issue in the model (CM).
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Table 4: Abbreviation of Actionable Changes

No Message Guideline Abbreviation

1 Improper Data MSG0

2 Change the loss function MSG1

3 Change the activation function MSG2

4 Change the learning rate MSG3

5 Change the initialization of weight MSG4

6 Change the layer number MSG5

7 Change the optimizer MSG6

Table 5: Abbreviation of Failure Symptoms

No Symptoms Abbreviation

1 Numerical Errors NS

2 Unchanged weight UCS

3 Saturated Activation SAS

4 Dead Node DNS

5 Out of Range ORS

6 Loss Not Decreasing LNDS

7 Accuracy Not Increasing ANIS

8 Vanishing Gradient VGS

9 Invalid Loss ILS

10 Invalid Accuracy IAS

11 Correct Model CM

3.4 Mapping Symptoms to Location �x

Decision Tree: The main goal of this step is to mitigate manual

e�ort and reduce the time for diagnosing and �xing bugs. To that

end, the Mapping() procedure in Algorithm 1 provides �x sugges-

tions based on the detected failure symptoms. Figure 2 shows a

representation of the Decision Tree which theMapping() procedure

uses to provide a �x recommendation.

The Decision Tree consists of 24 rules, which corresponds to

decision paths. Each rule provides a mapping from failure symp-

toms and detected locations to actionable changes. The tree de�nes

a binary classi�cation rule which maps instances in the format

problem (Symptom, Location, Layer) into one of seven classes of

changes (Table 4). In the decision tree, the root node represents

the problem, orange nodes the symptoms, blue nodes the locations,

gray nodes the layer type, green nodes, the conditions, and red

nodes the actionable changes. Table 3 shows the methods Data(),

Weight() and Learn(), which are used to compute the conditions.

Each Decision Tree instance maps a path from the root to one of

the leaves.

For example, assume that a developer wants to check the code

in Listing 1. To that end, the developers can use the Algorithm 1 to

verify the model. The algorithm invokes the Mapping() procedure

(line 26) by passing the symptomNS, location, stage BW (backward),

and layer (7). This procedure traverses the path under the NS node

in the Decision Tree (Figure 2). Since the problem occurred in the

BW stage, the algorithm takes the right path to satisfy the condition.

Then, it veri�es the layer type (7). Since it �nds an issue in the layer,

the procedure returns the message MSG2 – Change the activation

function (Table 4).

Heuristics: We developed a set of heuristics based on the root

causes (see Section 3.2). There are three main root causes: (1) Data

Preparation; (2) Parameter Tuning; and (3) Model Architecture. For

Algorithm 1: Failure Symptoms Detection

input :Training data (input, label), DNN program

output :Failure symptoms and locations (layers, iterations, epoch)

1 for � ← 0 to ����ℎ� do

2 for � ← 0 to 	�
��ℎ (�
�� ) Step ����ℎ���� do

3 � ← �
�� [� ]; � ← ����� [� ]

4 for 	 ← 0 to 	�
��ℎ (	�����) do

5 �1 ← 	���� [	] .������� (� )

6 �2 = 	���� [	] .���������
 (�1)

7 if �������
���
��� (�2 |� 1) then return NS,

�����
� ( !, �" , 	)

8 if #
�ℎ�
��"���ℎ� (�2 |�1) then return UCS,

�����
� (#$!, �" , 	)

9 if !������� (�1,�2 .
�%�) then return SAS,

�����
� (!�!, �" , 	)

10 if &��� ��� (�2) then return DNS,

�����
� (& !, �" , 	)

11 if '�� ( )�
�� (�2, � ) && 	 == 	��� then return

ORS,�����
� (')!, �" , 	)

12 � ← �2

13 	��� ← $�%���	��� (�2, � )

14 if 	��� is equal to NaN OR �
( then return ILS,

�����
� (*	!)

15 ������� ← $�%���������� (�2, � )

16 if ������� is equal to NaN OR inf OR 0 then

17 return IAS,�����
� (*�!)

18 if 	��� ��&�������
� (	���) then

19 return LNDS,�����
� (	 &!)

20 if ������� ��*
������
�(�������) then

21 return ANIS,�����
� (� *!)

22 �� ← �

23 for 	 ← 	�
��ℎ (	�����) to 0 do

24 �3," [	] ← 	���� [	] .+��-���� (��)

25 if ��
��ℎ�
�/�����
� (" [	]) then return VGS,

�����
� (�/!, +" , 	)

26 if �������
���
��� (�3 |" [	]) then return NS,

�����
� ( !,�3 |&" ,	)

27 if #
�ℎ�
��"���ℎ� (�3 |" [	]) then return UCS,

�����
� (#$!,�3 |&" , 	)

28 �� ← �3

29 return CM

Data Preparation, the algorithm checks if the data is normalized (C1

- ImproperData() in Table 3). For Parameter Tuning, our approach

checks if the hyperparameters (such as learning rate) were assigned

correctly. Also, to check if the weights were initialized correctly,

the algorithm invokes theWeightInitialization(). The TuneLearn()

procedure veri�es whether the learning rate is very high or very

low (C2 and C3 in Table 3, respectively). For model architecture,

the algorithm searches for a relation between the location and the

stage of the symptom. It performs this step to pinpoint which APIs

are being misused in the model (e.g., loss, activation function).

We collected the root causes for each symptom from previous

work [23, 24, 33, 40] (more details in Section 3.2). To arrive at a

possible �x for a given symptom, we choose the most frequent root
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cause. We follow this approach as our �ndings show that changes

in the order we check for the possible root causes do not a�ect the

results, only on the total time to arrive at a solution. For example,

assume that a model has the Dead Node symptom. In terms of

frequency, improper data tends to happen more often than weight

and learning rate. If the three root causes are correct, our approach

checks the model architecture, which is the least common in this

case. Thus, arriving at an improper activation function as the root

cause of this symptom.

4 EVALUATION

In the evaluation, we answer the following research questions:

• RQ1 (Validation): Can our technique localize the faults and

report the symptoms in Deep Learning programs e�ectively?

• RQ2 (Comparison): How does our technique for fault local-

ization compared to existing methodologies in terms of time

and e�ectiveness?

• RQ3 (Limitation): In which cases do our technique fail to

localize the faults and report the symptoms?

• RQ4 (Ablation): To what extent does each type of symp-

tom we developed contribute to the overall performance of

DeepDiagnosis?

4.1 Experimental setup

4.1.1 Implementation. We implemented DeepDiagnosis on top of

Keras 2.2.0 [18] and TensorFlow 2.1.0 [32]. Also, we implemented

Algorithm 1 by overriding the method called (on_epoch_end(epoch,

logs=None). For the Decision Tree in Figure 2, we implemented it

as a decision rule consisting of a set of conditional statements. The

overridden method invokes the decision tree once upon detecting

a symptom. Then it passes the symptom type as a parameter for

the decision tree.

We conducted all the experiments on a computer with a 4 GHz

Quad-Core Intel Core i7 processor and 32 GB 1867 MHz DDR3 GB

of RAM running the 64-bit iMac version 4.11.

4.1.2 Benchmark. In total, we collected 548 models from prior

work [7, 38, 48]. From these, we removed 104 RNN models, as

our approach does not support them. The resulting 444 models

are composed of 53, which are known to have bugs from [7, 38].

We refer to these 53 models SGS benchmark as they come from

StackOver�ow, GitHub, and Schoop et al. [38]. Also, the 391 models

from [48] are in the compiled *.h5 format. The remaining 391models

are divided into two sets. In particular, the �rst with 188 correct

models – without any known bugs – and the second with 203

buggy models – with bugs.

Most machine learning developers share the source code or the

trained weights of their models in *.h5 format. To allow others to

improve the understanding of how a model operates and inspect it

with new data, we implemented the Extractor tool [6]. It extracts

the DNN source code from a *.h5 �le. The Extractor follows three

steps to generate the Keras source code: �rst, it saves the model’s

layer information to a JSON �le. Then, it generates the Abstract

Syntax Tree (AST) from the JSON �le. Finally, it converts the AST

to the source code.

To build the ground truth for the SGS benchmark, we manu-

ally reviewed all models and their respective answers from Stack

Over�ow and commits from GitHub. We perform this veri�cation

process to determine the exact bug location and its root causes. For

the remaining 391 models - 203 buggy models and 188 not buggy

models, we used our Extractor to generate the source code for each

model before/after performing a �x; we used the di�ib [22] module

to generate the di� �le from the �xed model. We use the di� to

locate the changes in the model, thus locating the root causes and

the actual location of its corresponding �x. We consider a model

successfully repaired if its accuracy has improved after the �x.

4.1.3 Results Representation. Table 6 shows the summarized eval-

uation results of the following approaches: UMLUAT [38], DeepLo-

calize [44], AUTOTRAINER [48], and our approach DeepDiagnosis.

Please refer to the reproducibility repository [6] for the complete

table. The �rst column shows the source of the buggy model. The

second column lists the model ID. The third column provided the

Stack Over�ow post # and the model name from GitHub reposi-

tories, collected by Wardat et al. [44], and also the name of the

model introduced by Schoop et al. [8], respectively. To compare our

approach with the results generated from previous approaches, we

reported the results in the following columns (from left to right):

Time, Identify Bug (IB), Fault Localization (FL), Failure Symptom

(FS), and Location Fix (LF), and Ablation (AB). Time, in seconds,

reports how long each tool takes to report its results. The columns

Identify Bug (IB) and Fault Localization (FL) show whether the

approach successfully identi�es the bug and the fault location. Fail-

ure Symptom (FS) and Location Fix (LF) columns show whether

the tool correctly reports a symptom and an actionable change

(model repair �x). Finally, the Ablation (AB) column shows which

of the procedures listed in Table 2 detects the failure symptoms.

Under each approach, the “Yes” and “No” status indicates whether

it has successfully reported the target problem. Also, the “—” status

denotes if the approach does not yet support the target problem.

Lastly, we use method ID in Table 2 to indicate which procedure is

used to detect the failure symptom.

Table 7 summarizes the analysis results from four approaches

using benchmarks collected from three di�erent sources [38, 44, 48].

The second column (Total) lists the total number of buggy mod-

els for each dataset. To compare our approach with previous ap-

proaches, we reported Time, in seconds, the average time each tool

takes to report its results for each dataset. To mitigate randomness

during the training model, we followed the procedure described

in [48] and ran each model 5 times. The column Identify Bug (IB)

shows how many each approach successfully identi�es the bug

from each dataset. Our approach is capable of handling eight types

of symptoms with di�erent types of datasets using di�erent types

of model architectures. Table 8 shows the number of symptoms

detected from di�erent types of datasets.

4.2 RQ1 (Validation) and RQ2 (Comparison)

Table 6 and 7 show the evaluation results for RQ1 and RQ2.

DeepDiagnosis (DD) has correctly identi�ed 46 out of 53 buggy

models from the SGS benchmark. DD correctly reported the fault

location for 34 models and the failure symptoms for 37 models.

Also, DD correctly identi�ed the actionable changes for 28 out of

53 faulty models. Lastly, DD identi�ed 138 out of the 203 buggy
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Figure 2: Mapping Symptoms to Fix Location

Table 6: Comparing the Results from UMLAUT (UM), DeepLocalize (DL), AUTOTRAINER (AT) and DeepDiagnosis (DD)

No Post #

Time Identify Bug (IB) Fault Localization (FL) Failure Symptom (FS) Location Fix (LF) AB

UM DL AT DD UM DL AT DD UM DL AT DD UM DL AT DD UM DL AT DD

St
ac
k O

ve
rf
low

[7
]

1 48385830 0.39 2.14 103.91 8.27 Yes Yes Yes Yes Yes Yes — Yes Yes Yes Yes Yes Yes No No Yes #1

2 44164749 188.61 111.56 197.90 242.34 No Yes No No No Yes — No No Yes No No No No No No —

3 31556268 — 1.2 — 12.48 — Yes — Yes — No — Yes — Yes — Yes — No — Yes #7

4 50306988 1.9 3.57 93.60 1.75 No Yes Yes Yes No Yes — Yes No Yes Yes Yes No No Yes Yes #1

5 48251943 — 706.83 — 1.61 — No — Yes — No — Yes — No — Yes — No — Yes #5

6 38648195 5.4 25.92 85.38 15.12 Yes Yes No Yes No Yes – Yes No Yes No Yes No No No Yes #1

Gi
tH
ub

[7
]

7 GH #1 128.67 11.80 6524.21 44.90 Yes Yes Yes Yes No No — No No No Yes No No No Yes No #1

8 GH #2 — 8432.06 — 1001.40 — No — No — No — No — No — No — No — No –

9 GH #3 — 31.69 — 2.17 — Yes — Yes — Yes — Yes — No — Yes — No — Yes #5

10 GH #4 36.58 102.44 315.61 102.96 Yes Yes Yes Yes No No — No Yes No Yes No No No Yes No #4

11 GH #5 18.95 164.70 173.92 140.58 Yes Yes No Yes No Yes — Yes No Yes No Yes No No No No #2

12 GH #6 — 9568.09 12.57 118.59 — No No No — No — No — No no No — No No No –

Sc
ho
op

et
al
. [
8]

13 A1 (C-10) 1.77 18.39 43.96 2.75 Yes Yes Yes Yes Yes Yes — Yes Yes Yes No Yes Yes No No Yes #5

14 A2 (C-10) 1.50 44.93 18.36 10.44 Yes Yes No Yes No Yes — Yes Yes Yes No No Yes No No No #1

15 A3 (C-10) 348.88 44.89 119.54 5.03 Yes Yes Yes Yes No No — No Yes No No Yes Yes No No No #1

16 B1 (C-10) 347.21 10.65 80.38 2.17 Yes Yes Yes Yes No No — No Yes Yes Yes Yes Yes No No No #1

17 B2 (C-10) 3.42 45.02 16.90 5.44 Yes Yes No Yes No Yes — Yes Yes No No Yes Yes No No Yes #1

18 B3 (C-10) 1605.99 45.54 15.49 15.49 Yes Yes No No No No — No Yes No No No Yes No No No —

Total 26 45 24 46 3 26 — 34 17 23 19 37 15 0 8 28 —

C-10: indicates to the model using CIFAR-10 dataset, and F-M: indicates to the model using Fashion-MNIST dataset.

Table 7: Runtime Overhead vs. Problem Detects
Time Identify Bug (IB)

Dataset Total
UM DL AT DD UM DL AT DD

Stack Overflow [7] 29 46.16 421.39 771.56 103.74 10 27 16 26

GitHub [7] 11 46.16 2613.6 148.41 137.82 4 7 3 9

Schoop et al. [8] 12 193.52 93.17 3491.32 1020.20 12 11 5 11

Blob [9] 48 — 113.14 112.6 564.19 — 44 48 34

Circle [9] 71 — 148.63 84.37 1078.14 — 63 71 47

MNIST [9] 38 290.87 16.68 4741.53 1265.02 26 38 38 31

CIFAR-10 [9] 46 121.39 22.4 10653.63 3282.83 46 46 46 26

models from the AUTOTRAINER dataset, correctly reporting fault

location, failure symptoms, and actionable changes.

DeepLocalize (DL) [44] identi�ed 45 out of the 53 models from

the SGS benchmark and indicated fault locations for 26. It reported

symptoms for only 23 models, but it cannot provide any sugges-

tions to �x these faults. Regarding the AUTOTRAINER dataset, DL

identi�ed 191 out of the 203 buggy models and correctly reported

their fault location. However, DL did not provide any suggestions

for �xing those models. Lastly, DL can only detect bugs related to

numerical errors.

AUTOTRAINER (AT) [48] For the 53 models (SGS benchmark),

AT identi�ed 24 buggy models. Out of these, AT successfully re-

ported symptoms for only 19. AT was only able to repair 8 models.

DD can handle more varieties of semantically related errors than

AT, as shown in Table 6. Please refer to [48] for AT’s evaluation

results while analyzing its dataset.

UMLUAT (UM) [38] identi�ed 26 buggy models out of the 53

from the SGS benchmark and found the fault locations for 3. Also,

UM reported the symptoms for 17 models and provided the location

�x for 15 out of 53. UM correctly identi�ed models and reported

possible �x solutions to problems from 72 out of 203 buggy models

of the AUTOTRAINER dataset. UM only supports classi�cation

problems, while DD supports additional types, such as regression

and classi�cation.

To evaluate the approaches’ overall performance, we collected

their total execution time while analyzing the benchmarks. Fig-

ure 3 shows the results. UM, DL, AT, and DD require on average

46.16, 421.39, 771.56, and 103.74 seconds, respectively, for all the
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Figure 3: Comparison between UMLUAT (UM) VS DeepLo-

calize (DL) VS AUTOTRAINER (AT) VS DeepDiagnosis (DD)

in terms of seconds

Stack Over�ow (SOF) benchmarks. For the GitHub (GH) benchmark,

the four approaches require on average 46.16, 2613.60, 148.41, and

137.78 seconds, respectively. For the Schoop et al.’s [38] bench-

mark, the four approaches take on average 193.52, 93.17, 3491.32,

and 1020.80 seconds, respectively. For the AUTOTRAINER dataset,

the four approaches require, on average, 4159.25, 4157.36, 170156.70,

and 74408.07 seconds, respectively, to complete their analysis. Lastly,

the overall average time for UM, DL, AT, and DD, for all benchmarks

is 2972.23, 8388.21, 106490.05, and 44914.17 seconds, respectively.

DD’s runtime overhead is mainly due to its online dynamic

analysis. DD runs its dynamic analysis on the internal parameters of

the neural networks, such as the changes of weights and gradients,

during the training phase. DD is themost e�cient for Stack Over�ow

and Schoop et al.’s model and is slower than UM on the GitHub

models. The reason is that DD collects more information than UM

during training and checks additional types of error conditions.

DD is faster than AT on all benchmarks except for the Blob and

Circle datasets. That is because AT checks the target model after

�nishing the training phase. DD requires additional time because

it validates the model at the end of each epoch during training, and

the number of epochs for these models is between 200 to 500.

4.3 RQ3 (Limitation)

Out of 52 programs, our technique failed to identify faults in 6 and

localize faults in 18. DD failed to report symptoms for 15 programs

and failed to provide the location of �x for 24 (Tables 2 and 6). In the

following, we provide a few examples of failed fault localization.

Our technique does not yet supportmodel with fit_generator()

instead of fit() function. fit_generator() is used for processing

a large training dataset that is unable to load into the memory [17].

In the future, we plan to covermoreAPIs (such as fit_generator()).
Both #47 (B3 (C10)), and #53 (B3 (C10)) programs are related to

checking validation accuracy [38]. The model splits the train data

into training and validation data, and then provide the validation

data by passing validation_data=(x_val, y_val) into the �t()method.

The buggy model reported high accuracy for the validation dataset.

There may exist an overlap between training data and validation

Table 8: The Symptoms Results from DeepDiagnosis
DD - Symptoms

Dataset
NS UCS SAS DNS ORS LNDS ANIS VGS IAS ILS

Stack Overflow [7] 15 1 5 1 2 0 1 0 1 0

GitHub [7] 2 1 2 1 1 0 0 1 1 0

Schoop et al. [8] 6 0 0 3 2 0 0 0 0 0

Blob [9] 5 7 2 0 0 0 10 10 0 0

Circle [9] 12 12 3 1 0 0 11 8 0 0

MNIST [9] 16 0 0 7 0 0 0 8 0 0

CIFAR-10 [9] 17 4 0 0 0 0 0 5 0 0

data. But our approach would not indicate any symptom, as it does

not support problems related to training and validation.

Both #43 (A2 (C10)), and #49 (A2 (C10)) programs are related to

the dropout rate in the Dropout layer [38]. The idea of the dropout

is to remove a certain percentage of neurons during iterations to

prevent over�tting. The buggy model sets a high dropout rate =

0.8 which is more than the acceptable rate of 50%. Our approach

is not able to provide a correct suggestion to �x the model. In our

future work, we plan to investigate more hyperparameters such as

the batch size, epoch, and dropout rate to handle the above models.

DD supports deep learning models of various structures, includ-

ing convolutional neural networks (CNNs) and fully connected

layers. But, Recurrent Neural Networks (RNNs) are not supported

by our current reference implementation. Developers can extend

our DD to support RNNs and other architectures.

UM only supports classi�cation problems, in which the last layer

is softmax. Otherwise, it reports false alarms. DL only supports

numerical problems, and it does provide any suggestions on how to

�x a detected problem. AT supports classi�cation problems and does

not support problems in the model architecture (i.e., loss function,

activation function at last layer, and some APIs (e.g.,�t_generator())).

In terms of e�ciency, AT takes longer to �nd a �x, as it tries all

possible solutions until arriving at the correct one. In case it does

not �nd an improvement, it marks the problem as unsolvable.

4.4 RQ4 (Ablation)

The "Ablation" column of Table 6 shows which procedure in Ta-

ble 2 is used to report the symptom in each buggy model for SGS

dataset. We found that ExplodingTensor () detects 23 buggy models,

SaturatedActivation () detects 7, DeadNode () reports 5, OutofRange

() detects 5, UnchangeWeight () �nds 2, InvalidAccuracy () detects 2,

AccuracyNotIncreasing (), and VanishingGradient () reports only one

buggy model. Table 8 shows dataset names, and columns contain

the number of symptoms, which were detected successfully by the

corresponding procedure in Table 2. From Table 8, we found that

ExplodingTensor () detects 73 buggy models, VanishingGradient ()

detects 32, UnchangeWeight () �nds 25, AccuracyNotIncreasing ()

22, DeadNode () reports 13, SaturatedActivation () detects 12, Out-

ofRange () detects 5 , and InvalidAccuracy () reports only two buggy

models. Although the incorrect DNN models related to parameters

and structures often manifest as numerical errors during training,

DD provided further reasoning and categories of causes using these

procedures, which can help quickly �x the bugs. Our study also

found that data preparation is a frequently occurring issue and thus

the ImproperData() procedure is frequently invoked. SGS bench-

mark does not have a very deep model that contains many layers.

Thus we did not use VanishingGradient () detector very frequently.

On the other hand, VanishingGradient () is invoked very frequently

in AUTOTRAINER models, because this dataset has many layers
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using sigmoid and tanh as activation functions. However, when

N layers use a Logistic activation function (like sigmoid or tanh),

N small derivatives are multiplied together. Thus, the gradient de-

creases exponentially and propagates down to the input layer.

4.5 Results Discussions

We compared and contrasted three approaches [37, 44, 48] against

our approach (DD). From Table 7, we found our approach detected

more problems in the SGS dataset than AUTOTRAINER. Also, it

detected fewer problems in AUTOTRAINER dataset than the AT ap-

proach. The reason is that our approach only reported the problem

and solution if it detected one of 8 symptoms. On the other hand, AT

inspects the model based on the training accuracy threshold [48].

For our evaluation, we used 188 normal models from [48]. From

those, 78 are MNIST, 35 are CIFAR-10, 36 are Circle, and 39 are Blob.

UM reported the message: “<Warning: Possible over�tting>” for 68

out 78 MNIST models. It reported the following message: “[<Error:

Input data exceeds typical limits>]” for 35 out 35 CIFAR-10 models,

because the training data is not in the range [-1, 1]. DL reported the

message: “MDL: Model Does not Learn” for 4 out 34 Circle models

and 16 out 39 Blob models. For all MNIST and CIFAR-10 models,

DL reported di�erent messages. AT checks if a model has training

accuracy less than or equal to the threshold of 60%. To make a

fair comparison between the approaches, we changed the training

accuracy threshold to 100%. AT reported di�erent symptoms for

10 out of 36 Circle, 5 out of 39 Blob models, and 2 models with

problems out of the 78 MNIST models. Our approach reported one

saturated symptom for 36 Circle, which is not supported in AT,

reported 8 symptoms - 6 “saturated activations” and 2 the “accuracy

is not increasing.” For the MNIST model, our approach reported 37

symptoms - 35 “dead nodes” and one is a “numerical problem;” we

investigated this model and found its accuracy is 20%. For CIFAR-10

models, DD reported 21 models with “dead node” out of 35 models.

All detailed experiment results are publicly available [6].

4.6 Summary

DD signi�cantly outperformed the baselines UM, DL, and AT in the

SGS dataset (Tables 6 and 7). In particular, identi�ed 46 out of 53

buggy models, correctly performed fault localization in 34 models,

and reported symptoms for 37 of those. DD also provided a location

to �x 28 out of 53 faulty models. Regarding total analysis time, DD

outperformed AT because it does not require the training phase

to �nish to detect bugs. Also, DD uses a Decision Tree (Figure 2)

approach to reduce the search space when mapping symptoms to

their root causes.

Furthermore, DD is more comprehensive than prior work, as it

supports several varieties and semantically related errors in classi-

�cation and regression models. Also, DD supports 8 failure symp-

toms, while prior approaches support fewer (in Section 3).

Finally, DD does not support some APIs (e.g., �t_generator())

as we consider problems related to hyperparameters, for example,

epoch, batch size, and dropout rate, as out of scope.

5 THREATS TO VALIDITY

External Threat: We have collected 53 real-world buggy DNN

models from Stack Over�ow, GitHub and 496 models from prior

work [38, 44, 48]. These models cover a variety of failure symptoms

and location to perform �xes; however, our dataset may not include

all types of DNNAPIs and their parameters. Tomitigate the threat of

behavior changes caused by the Extractor tool, wemanually veri�ed

the accuracy of each model before and after their conversion. We

used the Extractor to extract the source code from the 496 models

from AUTOTRAINER [48]. In terms of execution time, di�erent

hardware con�gurations may o�er varying response times. We

mitigated this threat by executing our experiments several times

and calculated their averages.

Internal Threat: When implementing Algorithm 1, Decision

Tree (Figure 2), and Tables 2 and 3, we used the parameters de�ned

by prior works [1, 10, 20, 37, 48]. These selected values may not

work for some unseen examples. To mitigate this threat, we have

validated these selected parameters against our benchmarks col-

lected from a diverse set of sources [38, 44, 48]. For each of these

benchmarks, our selected parameters work consistently well. Al-

though we have carefully inspected our code, our implementation

may still contain some errors. We manually constructed ground

truths regarding fault location, failure symptoms, and location to

�x for all the buggy models based on the data from the previous

research [38, 44, 48]. This process may have introduced errors.

6 RELATEDWORK

Fault localization inDeepNeuralNetworks: The recent increase

in the popularity of deep learning apps has motivated researchers

to adapt fault localization techniques to this context. With the

intent of validating di�erent parts of DL-based systems and discov-

ering faulty behaviors. The goal of fault localization is to identify

suspicious methods and statements to isolate the root causes of

program failures and reduce the e�ort of �xing the fault [36]. War-

dat et al. [44] presented an automatic approach for fault localization

called DeepLocalize. It performs dynamic analysis during training

to determines if a target model contains any bugs. It identi�es the

root causes by catching numerical errors during DNN training.

While DeepLocalize focuses on identifying bugs and faults based

on numerical errors, DeepDiagnosis aims to perform fault local-

ization beyond that scope. Furthermore, our approach can report

symptoms and provide actionable �xes to a problem.

DEBAR [49] is a static analysis approach that detects numerical

bugs in DNNs. DEBAR uses two abstraction techniques to improve

its precision and scalability. DeepDiagnosis uses dynamic analysis

to localize faults and report symptoms of a model during training. In

contrast, DEBAR uses a static analysis approach to detect numerical

bugs with two abstraction techniques.

Schoop et al. [38] proposed UMLUAT, a user interface tool to �nd,

understand and �x deep learning bugs using heuristics. It enables

users to check the structure of DNN programs and model behav-

ior during training. Then, it provides readable error messages to

assist users in understanding and �xing bugs. Section §4 shows the

comparison between UMLUAT [38] and DeepDiagnosis. DeepDiag-

nosis is more comprehensive, e�cient, and e�ective than UMLAUT,

which only supports classi�cation models.

DeepFault [15] is an approach that identi�es suspicious neurons

of a DNN and then �xes these errors by generating samples for

retraining the model. DeepFault is inspired by spectrum-based fault
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localization. It counts the number of times a neuron was active/i-

nactive when the network made a successful or failed decision. It

then calculates a suspiciousness score such as the spectrum-based

fault localization tool Tarantula. In contrast, DeepDiagnosis focuses

on identifying faults and reporting di�erent types of symptoms for

structure bugs.

Bug Repair in Deep Neural Networks: Zhang et al. [46] pro-

posed Apricot, an approach for automatically repairing deep learn-

ing models. Apricot aims to �x ill-trained weights without requiring

additional training data or any arti�cial parameters in the DNN.

MODE [30] is a white-box approach that focuses on improving the

model performance. It is an automated debugging technique in-

spired by state di�erential analysis. MODE can determine whether

a model has over�tting or under-�tting problems. Compared with

MODE and Apricot, which focus on training bugs (e.g., insu�-

cient training data), DeepDiagnosis focuses on structure bugs (e.g.,

activation function misused).

Zhang et al. [48] introduced AUTOTRAINER, an approach for

�xing classi�cation problems. Zhang et al. de�ne �ve symptoms,

and provide a set of possible solutions to �x each one. Once AUTO-

TRAINER detects a problem, it tries the candidate solutions, one

by one, until it addresses the problem. If none of the solutions �x

the problem, it reports a failure message. The evaluation used six

popular datasets and showed that AUTOTRAINER detects and re-

pairs the models based on a speci�c threshold. AUTOTRAINER was

able to improve the accuracy for all repairing models on average

47.08%. DeepDiagnosis analyzes the model’s source code during the

training phase to localize the bug. DeepDiagnosis supports eight

symptoms, while AUTOTRAINER supports �ve. DeepDiagnosis

does not perform automated �xes, but it provides actionable rec-

ommendations that developers can follow. AUTOTRAINER tries all

possible strategies in its search space to �x a problem and outputs

whether or not the �x was successful. In contrast, DeepDiagnosis

uses a decision tree to reduce the solution search space, thus sav-

ing time and computational resources. In summary, the goals of

DeepDiagnosis and AUTOTRAINER are di�erent; DeepDiagnosis

focuses on fault localization while AUTOTRAINER on automati-

cally repairing a model.

7 CONCLUSIONS AND FUTUREWORK

This paper introduces a dynamic analysis approach called DeepDi-

agnosis that a non-expert can use to detect errors and receive useful

messages for diagnosing and �xing the DNN models. DeepDiagno-

sis provides a list of veri�cation procedures to automatically detect

8 types of common symptoms. Our results show that DeepDiagno-

sis can successfully detect di�erent types of symptoms and report

actionable changes. It outperforms the state of the art tool such as

UMLUAT and DeepLocalize, and it is faster than AUTOTRAINER

for fault localization and provide suggestions to �x the issue.

We have identi�ed several futurework directions. First, wewould

like to extend our approach to support additional model types,

failure symptoms, and automatic repair. Second, we would like

to conduct studies on how to improve DNN bug repair on non-

functional bugs such as fairness bugs [11, 12]. Third, we would

like to extend our approach to support additional types of bugs in

di�erent stages of the ML pipeline [13]. Lastly, we would like to

explore how to leverage our �ndings to improve the performance

of AutoML models [35].
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