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Abstract—With the increasing popularity gained by cloud
computing systems, cloud providers are facing rapidly increasing
traffic loads, which requires them to have proper expansion
strategies for their datacenters. Expanding the capacities of
existing datacenters or building new ones requires many factors
to be considered such as power resources availability, prices (of
power, land, etc.), carbon tax, free cooling options, and renewable
energy. In this paper, we address the problem of deciding the best
expansion strategy for a given cloud provider by deciding whether
it is beneficial for the cloud provider to build new datacenters or
to simply expand the datacenters it currently has.

Keywords—datacenters, renewable power, operation cost, profit
maximization, cost minimization, carbon tax, optimization.

I. INTRODUCTION

One of the main concepts related to cloud computing [1],
[2] is the move of computations from the user-side to the
Internet. With the cloud computing paradigm, companies no
longer need to establish and run their own servers to provide
on-line services to their customers. Instead, they can simply
“rent” the required infrastructure from a specialized cloud
provider under a pay-per-use model reducing the Total Cost
of Ownership (TCO) and allowing the companies to focus on
their own businesses especially in startup companies. Such an
option is becoming more appealing for an increasing number
of companies, which creates more demand on cloud providers
forcing them to optimize their expansion strategies. These
expansion strategies should take into consideration both the
quality of the service provided to the customers and economic
impact on the service provider.

Cloud providers may own several datacenters sparsely
distributed across the world to service their clients. Such
datacenters are usually huge containing tens of thousands
of servers and consuming more power than a medium-size
town.1 Even with these huge datacenters, a cloud provider
might still be unable to provide a high quality of service
(i.e., one where the service-level agreement (SLA) with the
client is not violated) due to the high demand. Thus, expansion
strategies must be devised. The cost of expanding a datacenter
or building a new one can vary greatly depending on the land
cost and the required computing capacity. In this paper, we
address the problem of deciding the best expansion strategy
for a given cloud provider by deciding whether it is beneficial
for the cloud provider to build new datacenters or to simply

1http://www.nytimes.com/2012/09/23/technology/
data-centers-waste-vast-amounts-of-energy-belying-industry-image.html

expand the datacenters it currently has. To solve this problem,
one needs to address several issues such as where to build the
new datacenters and in which capacities, how to distribute the
current and future traffic loads among the new and existing
datacenters, etc.

Datacenters are a crucial part for governmental institu-
tions, businesses, industries, and many others. Datacenters
vary greatly in size from small in-house datacenters to large
scale datacenters that provide their services publicly for mil-
lions of users. Datacenters of one service provider may be
distributed over a large geographical area which will add
an extra overhead in efficiently managing them. In general,
datacenters are consuming large amounts of power that my
reach up to tens of Megawatts. Also, cooling datacenters are
consuming huge amounts of power. These facts are creating
many related problems on both the environment and energy
resources. A 2010 study showed that large-scale datacenters
consumed about 2% of all electricity usage in the United
States [3]. This percentage can be translated to be over 100
billion kWh with an approximate cost of $7.4 Billion [4].
Power usage in datacenters is divided into the power consumed
by the actual processing system, storage, memory system,
etc., and the power consumed by nontechnical components
such as ventilation and cooling systems, lighting, etc. The
increasing power prices are demanding to reduce the power
consumption of datacenter and to increase the usage efficiency
of the available power of the datacenters. The new laws for
carbon tax are also pushing forward the optimization of power
usage. The adoption of renewable energy usage to cover data-
centers power requirements is showing a momentum between
datacenters owner. Also, building datacenters in locations that
provide free air cooling is a good choice for datacenters owner
(e.g., Facebook datacenter in Prineville, Oregon). Moreover,
management overhead of today datacenters are requiring a lot
of man power to handle the extended traffic load. The shortages
of such skills is a very serious issue especially in case of
constructing many distributed datacenter. Another important
issue with having many distributed datacenters is the load
balancing between the datacenters. This can be impacted by the
availability of high network bandwidth connecting datacenters
and its cost.

The rest of this paper is structured as follows. Section II
presents the related works. In Section III, we present our
system model and evaluate it in Section IV. Finally, we
conclude in Section V.



II. RELATED WORKS

The main problem addressed in this work is the expansion
strategies of cloud providers to meet the increasing demands
of the users. The body of work on this problem is limited since
most of the current works focus on optimizing the currently
available datacenters by improving power consumption, cool-
ing, request routing, etc. We start our discussion of the related
works by discussing these issues before going into the more
relevant papers concerned with the added issue of building new
datacenters and/or expanding currently available datacenters by
increasing its service capacity, which is achieved by increasing
the number of servers they contain.

A rich volume of recent research works focus on reducing
power costs instead of consumptions. These research works
mainly devise different workload distribution policies across
geo-distributed datacenters for achieving different performance
objectives such as total electricity cost minimization [5], [6],
[7], [8], bandwidth cost minimization [9], energy efficiency
improvement [10], cooling efficiency [11], reducing carbon
footprint [12], maximizing renewable energy usage [13], etc.
In order to achieve these objectives researchers have mainly
formulated the workload distribution problem as various linear
and non-linear optimization problems and adopted various
methods and tools to solve it. For optimum solutions, the com-
monly used mathematical tools are mixed integer programming
[6], [7], [8], [14].

Electricity price volatility, [5] is one of the first works
to observe the temporal and spatial variability of electricity
prices in the wholesale market. The authors argued that as
the electricity prices fluctuates across different regions energy
expense per unit of computation is not the same for every dat-
acenter. Based on this interesting observation, they designed a
distance constrained electricity price optimizer that can achieve
significant economic gain. The price optimizer judicially places
the load from the client to the datacenter located at cheaper
price regions within some radial geographical distance.

The recent research focuses on the future site of the
datacenter, because the electricity price is not the same in each
region, the datacenter is expected to be built in the location
where the lower prices, colder regions and the location where
the renewable energy are available ; to reduce the carbon
footprint.

In [15], the authors studied the problem of selecting the
best locations to build a fixed number of datacenters. They
assumed that the datacenters to be built are not associated
with any already existing datacenters. They formulated three
optimization problems with three objective functions, where
the objectives are (i) minimizing the carbon footprint, (ii)
minimizing the total cost (including the energy cost, the
bandwidth cost and the carbon tax), and (iii) minimizing
the average service latency subject to the Quality of Service
(QoS) constraints. Their formulation takes as input a set of
candidate locations and determines the best location(s) to build
future datacenter, the number of servers required at each new
datacenter, and how the service requests can be routed to each
datacenter.

Another work to select future site(s) is proposed in [16].
The authors introduced a new process that can be used to select
the best locations to build new datacenters while considering

any already existing datacenters the cloud provider may have.
The author formulated an optimization problem considering
the following factors: (i) the capital cost (CAPEX), which
includes the costs of land acquisition, construction of the
infrastructure of datacenter, electricity and bandwidth supplied
to the datacenter, etc., (ii) the operational cost (OPEX), which
includes the costs of electricity, bandwidth, water for cooling
the datacenter, carbon tax, administration staff salary, etc., (iii)
response time, which depends on the distance between the
location of datacenter and a population center, (iv) consistency
delay, which depends on the distance between two potential
locations of the datacenter and (v) availability. The main ob-
jective of the formulated problem is to minimize the total cost
(i.e., CAPEX & OPEX) subject to response time, consistency
delay and availability.

Reducing the carbon footprint and maximizing renewable
energy usage are the objectives considered by the authors of
[17] who showed that the carbon footprint can be reduced
by building the datacenters near to the sites of the renewable
energy. They developed a mathematical model for calculating
the total carbon footprint including: (i) the manufacturing
footprint (ii) the usage footprint and (iii) the communication
footprint. The authors discussed how to reduce the carbon
footprint (especially, the manufacturing carbon footprint) by
redistributing the load of datacenter to other sites as the
availability of renewable energy.

The authors of [6] formulated a model to address the total
electricity cost problem under diverse electricity prices across
different regions and time periods while maintaining QoS
guarantees. This model for total electricity cost, workload load,
end-to-end delay constraint for datacenters. They formulated
the model as a mixed-integer programming problem where
the constraints captured the workload requirements and the
service delay assurances. The authors solved it using the fast
polynomial algorithm proposed by Brenner [18].

Compared with the previously mentioned related works,
the contribution of this work lies in the following points. No
prior work has addressed the problem of determining the best
future location of the datacenter while taking into account
the tradeoff between maximizing the revenue and minimizing
the operational cost of the datacenter instead of (bandwidth,
cooling, carbon tax, and power costs). Moreover, previous
works neglect important economical aspects such as the annual
inflation in the costs (bandwidth, cooling, price of electricity)
and in the revenue.

III. SYSTEM MODEL

In this section, an optimization problem is formulated
using mixed integer programming to address the problem
of determining the best expansion strategy a cloud provider
can take to face the increasing demands and increase its
revenue. The computed strategy may include expanding current
datacenters by increasing the number of servers they contain
or building new datacenters (which involves determining how
many datacenters to build, where to build them and in which
capacities). This is achieved by calculating the profit gained
in each year of the period under consideration. Taking a
look at the accumulated and inflated profits over the years
and comparing it with what would the initial investment



gain by placing it in a bank makes the decision of whether
to build new and/or expand the current datacenters an easy
decision. Inflation is discussed in subsection III-A, whereas
in subsection III-B, we present an extension of the proposed
model that takes into account the effect of renewable energy
more explicitly.

In the proposed model, the cloud provider inputs its current
datacenter locations along with the number of servers each
one has and the system will find the revenue maximizing
option regarding building new and/or expanding the current
datacenters. We consider a discrete-time model, in which the
time period of interest is discretized on two levels: a major
level and a minor level. On the major level, the overall time
period is divided into T time segments, where each segment
can represent a decade, a year, a month, etc., while, on the
minor level, each major time segment is divided into H
timeslots. In the following year, we consider T and H to be
the number of years and the number of hours in each year,
respectively.

Before describing our model, we briefly go over the
notations used and the assumptions made. In order for our
model to work, we have to specify discrete sets of user
locations,2 denoted by U , and datacenter locations, denoted
by S, which includes the set of current locations along with
the set of candidate location on which the cloud provider can
build datacenters. Now, we define a set of binary variables,
X = {xt

s|t ∈ T, s ∈ S},3 to denote whether a datacenter is
built on location s at year t. Obviously, we must make sure
that if a datacenter is built on certain location in a certain year,
it stays like this for the following years (i.e., if xt1

s = 1 then
xt2
s must also be 1 for all t2 > t1). Currently built datacenters

are easy to handle in this way. If s is the location of a currently
built datacenter, then xt

s = 1 for all t ∈ T .

By taking into account the change in the price of electricity
in different locations at different times during the day, the au-
thors of [15] proposed a request distribution policy to route the
parts service requests to potentially different datacenters. For
this purpose, we denote the total number of service requests
originating from user location u during hour h of year t by Lt,h

u

and the portion of Lt,h
u serviced by the datacenter s in location

s by λt,h
s,u. Let Λ = {λt,h

s,u|s ∈ S, u ∈ U, t ∈ T, h ∈ H}. The
following constraint ensures that no request is denied.

∑

s∈S

λt,h
s,u = Lt,h

u , ∀h ∈ H, t ∈ T (1)

We mow define a binary variable (yt,hs,u) to represent the ability
of datacenter s to handle service requests from user location
u at hour h in year t. Let Y = {yt,hs,u|s ∈ S, u ∈ U, t ∈
T, h ∈ H}. Obviously, if a datacenter is not yet built at a
certain location, it cannot service any request. Thus, we have
the following constraint.

yt,hs,u ≤ xt
s, ∀s ∈ S, u ∈ U, h ∈ H, t ∈ T (2)

2User locations could be cities, towns, etc.
3For the sake of simplifying the presentation, we are slightly abusing the

notation and treat T , H , U , S and X as both sets (representing the years of
the project, the hours in each year, the user locations, the datacenter locations
and the binary variables representing whether a datacenter is built on a certain
location in a certain year, respectively) and integers (representing the sizes of
these sets).

Moreover, to ensure that if a datacenter s does not receive a
service request it is not ready to handle, we use the following
constraint.

0 ≤ λt,h
s,u ≤ yt,hs,uL

t,h
u , ∀s ∈ S, u ∈ U, h ∈ H, t ∈ T (3)

We define mt
s to be the number of servers in datacenter

s during year t. Let M = {mt
s|t ∈ T, s ∈ S}. The number

of servers in any datacenter is bounded by lower and upper
bounds represented by Mmin and Mmax, respectively. Then
we have:

xt
sM

min ≤ mt
s ≤ xt

sM
max, ∀s ∈ S (4)

The total power consumption in the datacenter id divide
into two types depending on whether power is consumed
by an IT equipment (such as servers, routes, etc.) or not
(e.g., for conversion, lighting, and cooling, etc.). The ratio
between the total power consumption to the IT equipment
power consumption is donated by Eusage and it is used as a
measure for a datacenter’s power usage efficiency (PUE) [19].
As for the power consumption of the servers, we denote the
average power consumption of a single server when the server
is idle by Pidle and when it is handling the service request
by Ppeak. Following the model of [20], we can calculate the
power consumption in candidate location s for a certain hour
h in year t as follows.

P t,h
s = mt

s(Pidle + (Eusage − 1)Ppeak)

+ mt
s(Ppeak − Pidle)γ

t,h
s + xt

sǫ (5)

where ǫ is an empirically derived constant and γt,h
s denotes

the average server utilization of the datacenter s during hour
h of the year t defined as:

γt,h
s =

∑

u∈U λt,h
s,u

mt
sµ

(6)

where µ denotes the total number of service requests that a
computer server can handle in one hour. Note that although
the last two equations seem non-linear, they can be easily
linearized by plugging the definition of [19] into Equation 5.

Datacenters require so much energy. In fact, some large
datacenters consume more power than a medium-size town.
The power plant in each region supplies the power for sub-
scribers, commercial, residential, and industrial load, which
leads to varying demand throughout the day. Moreover, some
of the power plants depend on renewable energy sources such
as the wind, the sun, etc. So, the proposed model takes into
account the amount of available power at each hour of the day
as follows.

P t,h
s ≤ P t,h,max

s , ∀s ∈ S, h ∈ H, t ∈ T (7)

Several factors affect the quality of the provided service
and may cause violations in the service-level agreement (SLA).
Delay is one of these factors. Different types of delay have
been explored in the literature. In this model, we focus only
on the propagation delay. The following constraint makes sure
that the the propagation delay for any request from user u
serviced by datacenter s (denoted Ds,u) does not exceed the
maximum delay allowed by the SLA.

2Ds,uy
t,h
s,u ≤ Dmax, ∀s ∈ S, u ∈ U, h ∈ H (8)



In order to avoid other SLA violations, we limit the average
server utilization at each datacenter by a constant upper bound
γmax ∈ (0, 1]. Thus, we have the following condition.

γt,h
s ≤ γmax, ∀s ∈ S, h ∈ H (9)

The value of γmax depends on the quality of service and the
type of service request. In this model, the type of service we
consider is web service request, therefore, the value γmax is
small enough to avoid waiting time.

Now, we are ready to present our formulation. The input
parameters include the set of user locations, the set of the
datacenter locations, the hourly traffic loads from each user
location, the propagation delay between each user location
and each datacenter location along with the upper bound on
the propagation delay, the power consumptions of a single
server when it is idle and when it is processing a request,
and, for each datacenter location, the PUE, the hourly power
constraint, the maximum utilization and the maximum and
minimum capacities (in terms of the number of servers) of
each datacenter. The parameters to be computed are X , M , Y
and Λ. Note that the sets X and M might be partly filled with
information about currently built datacenters as follows. If s
is the location of a currently built datacenter, then xt

s = 1 for
all t ∈ T , and m0

s is set to the number of servers already in
datacenter s. The formulation is as follows.

Maximizex,m RV(T )− (OPEX(T ) + CAPEX(T ))

Subject to Constraints 1− 9.

The notation will be explained in the following paragraphs.

The overall cost of the datacenters can be divided into
operational cost (OPEX) and capital cost (CAPEX). CAPEX
includes the costs of land acquisition, construction of the
infrastructure of datacenter, electricity and bandwidth supplied
to the datacenter, etc., whereas OPEX includes the costs of
electricity, carbon tax, bandwidth cost, etc. More formally,
CAPEX for a certain year t can be expressed using the
following equation.

CAPEX(t) =
∑

s∈S

(xt−1
s − xt

s)BC
t
s + (mt−1

s −mt
s)SC

t
s,

where BCt
s represent the cost of building a datacenter s in

year t and SCt,s represent the cost of buying a server for the
datacenter s in year t.

To maximize the profit, cloud providers are interested in
reducing OPEX, which means that locations with low elec-
tricity prices are favorable. However, choosing such locations
might not be the most environmentally responsible decision.
For example, in Wyoming and Utah the price of electricity is
cheaper, because of their coal-fired power plants [15]. The
carbon footprint of coal-fired and natural gas generators is
higher than nuclear and hydroelectric generators [21]. OPEX
for a certain year t can be expressed as follows [15].

OPEX(t) =
∑

s∈S

∑

h∈H

(θtsP
t,h
s +δts(ρs+1)P t,h

s +
∑

u∈U

(λt,h
s,uσ

t
s,u)),

where δts is the carbon tax in location s in year t, ρs is the
power transmission loss rate location s, σt

s,u is the cost of
the bandwidth between user location u and candidate location
s and θts is the price of electricity in candidate location s

taken during three different time-of-use price periods: off-peak
(when the demand for electricity is low), mid-peak (when the
demand for electricity is moderate; generally, during daytime,
but not the busiest times of day) and on-peak (when the
demand for electricity is high; generally, when people are
cooking, firing up their computers and running heaters or air
conditioners).

Now, the revenue of year t is computed using the following
equation [22]: RV(t) = ((1 − p(x))αtλt,h

s,u − p(x)βt), where
p(x) is the probability that the waiting time for a service
request exceeds the SLA-deadline, αt is the service fee that the
datacenter charges the costumers for handling a single service
request and βt is the penalty that the datacenter must pay for
every service request it cannot handle (thus, causing an SLA
violation).

A. Inflation

Due to insufficient data, several input parameters (such
as the traffic loads) cannot be predicted accurately. The best
we can do is to compute the current (or past) values for
such parameters and “inflate” them as shown in the following
paragraphs. Inflation is also important since the time interval
considered in this model may span several years and we need
to predict future monetary values of certain things (such as
electricity). Moreover, any amount of money (whether it is
a profit or a loss) setting for any amount of time (months,
years, etc.) must be inflated. In this work, several values are
inflated such as the traffic loads (Lh,t

u ), the electricity prices
(θts), the carbon taxes (δts), the bandwidth costs (sigmats,u),
service fees (αt), penalties for SLA violations (βt). the initial
investment and the yearly revenue. Of course, these different
values might require different inflation rates. In our simulation
results, we try to use realistic values for these rates based on
our reading of the literature.

To handle these cases, we define the following functions.
We start with the compound interest, which can be computed

as A = P
(

1 + r
n

)nt
, where A is the amount of money

accumulated after t years, including interest, P is the principal
amount (the initial amount you borrow or deposit), r is the
annual rate of interest (as a decimal), t is number of years
the amount is deposited or borrowed for and n is the number
of times the interest is compounded per year. Now, we move
to the Compound Annual Growth Rate (CAGR), which is the
interest rate at which a given present value would “grow” to
a given future value in a given amount of time. The formula

for computing CAGR is:
(

FV
PV

)
1

t − 1, where FV is the future
value, PV is the present value and t is the number of years.
Finally, the formula for the inflation rate is: Pn = P (1 + i)n,
where Pn is total inflated/estimated cost, i is the inflation rate
and t is the difference between the base year and the selected
year. Alternatively, we can use the following simpler (linear)
to compute inflation Pn = P + (P × i× n).

B. Renewable Energy

The model discussed so far does not explicitly account
for renewable energy, which is one of the biggest concerns
related to datacenters and their effect on the surrounding
environment. To address this issue, we reformulate Equation 5



TABLE I. THE NUMBER OF SERVERS IN EACH DATACENTERS DURING

5 YEARS.

Year 1 2 3 4 5

DC1 5000 5000 15122 31411 46784

DC2 0 5000 30237 50000 50000

DC3 0 0 0 0 5000

DC4 41677 47097 49999 50000 50000

DC5 41677 50000 50000 50000 50000

DC6 0 0 0 0 6971

DC7 0 5000 15122 31402 50000

DC8 0 5000 15123 31394 50000

DC9 41677 50000 50000 50000 50000

DC10 0 0 0 12797 50000

DC11 36678 47097 50000 50000 50000

DC12 41677 50000 50000 50000 50000

Total 208386 264194 325603 407004 508755

as follows [22].

P t,h
s = [mt

s(Pidle + (Eusage − 1)Ppeak)

+ mt
s(Ppeak − Pidle)γ

t,h
s + xt

sǫ− xt
sG

t,h
s ]+,

where [x]+ = max{x, 0} and Gt,h
s is the amount of renewable

power generated in location s during hour h of year t. The
amount of power exchange with the power grid is obtained as
[P−G]. If local renewable power generation is lower than local
power consumption, i.e., P > G, then [P −G] is positive and
the power flow is in the direction from the power grid to the
datacenter. If P = G then the datacenter operates as a zero-net
energy facility. Now, if P < G, then [P−G] is negative and the
power flow is in the direction from the datacenter to the power
grid [22]. Note that, [P −G]+ indicates the amount of power
to be purchased from the grid. If this term is negative, the
datacenters electricity cost will be zero, given the assumption
that the grid does not provide compensation for the injected
power [22]. In the simulations, we were forced to ignore this
important extension due to the lack of realistic input data for
the different types of renewable energy generators.

IV. EXPERIMENTS AND RESULTS

In this section, we discuss the simulation experiments we
conducted on our system and the obtained results. We start by
discussing the candidate locations. We focus on contiguous
US for simplicity and due to the fact that most of the
required data is available for this part of the world. Since
the power availability is limited in certain regions, we need
to exclude states generating power at rates smaller than their
consumptions. According to [23], the excluded states are CA,
NV, ID, SD, MN, WI, OH, TN, FL, NC, VA, MD, NY, DE,
NJ, CT, RI, VT, MA, and DC. As for the remaining states, we
must make sure that Constraint 7 is satisfied, so, we compute
the maximum available power in each state as follows. For IA,
KY and MS, the maximum available power is 60 megawatts
while other states such as WA, NH, OR, OK, UT, WY, IL,
AZ, PA and SC can handle larger demands (greater then 100
megawatts).

After deciding the set S, we turn our attention to other input
parameters. According to [20], we set Ppeak and Pidle to 140
and 84 watts. A fixed value of 2 is a common choice in the lit-
erature for PUE [19]. However, we do consider a more realistic
case where the PUE changes with varying outside temperature
as shown in Figure 2. For the sake of simplicity, we consider
only four different outside temperatures for each location
depending on whether the considered time is in the Summer or
the Winter season and whether it is during daytime or at night.

Fig. 2. PUE values for different outside temperature [16].

TABLE II. TIME PERIODS FOR BOTH VARYING PUE VALUES AND

DYNAMIC PRICING.

period Summer May 1 - October 31 Winter November 1 - April 30

Daytime 6am-7pm 7am-6pm

Night 7pm-6am 6pm-7am

Off-peak 7pm-7am 7pm-7am

Mid-peak 7-11am & 5-7pm 11am-5pm

On-Peak 11am-5pm 7-11am and 5-7pm

The temperatures are taken from online weather websites such
as weatherbase.com and worldweatheronline.com. The details
of these periods are shown in Table II.

As for the traffic load, we choose the total number of
service requests incoming from all user locations to be between
1.5 and 2 million hits/sec [5]. We assume that each server
can process one request per second, i.e., µ = 3600. We set
γmax = 0.8 [24]. The electricity price information based on
the average price for industrial load is available [25]. As men-
tioned in Section III, we consider three different time-of-use
price periods: on-peak, off-peak and mid-peak. Moreover, we
assume two different seasons: Winter and Summer. The price
of electricity vary from one period to the other by as much
as 3 cent/kWh. Table II shows the details of the considered
time periods. Finally, we note that we focus in our simulation
on OPEX and exclude CAPEX due to the limited publicly
available information about the input parameters required by
CAPEX.

Now, let us present and discuss the results of the two
experiments we conduct. The objective of the first experiment
is to study the decisions made by the proposed formulation
regarding the best expansion strategies to handle the increasing
traffic load. We run our model for five years on 12 datacenter
locations, half of which have already built datacenters. Re-
member that an already built datacenter will have some servers
in it. Since the servers are homogenous and resources (like
servers) are only added when needed, the number of servers
in each datacenter is an indication of how much traffic load it
is processing. We assume that the maximum number of servers
to be placed in a single datacenter is 50,000. Table I shows
how the number of servers in each datacenter increases with
the passage of time and the increase in the traffic load. At
the beginning, only one (DC1) out of the six already built
datacenters was lightly loaded small while the other five were
heavily loaded. In the second year, the lightly loaded datacenter
(DC1) remained lightly loaded (probably due to its high op-
erational cost or high delay compared with the other available
datacenters) and the heavily loaded datacenters almost reached
their full capacity. Moreover, three new datacenters were built.
The same trend continues in the following years. Datacenters
with low operational cost or low delay expand in terms of the
number of servers until they reach their full capacities. If this
is not enough to process the newly generated traffic, either new
datacenters are built or the datacenters with high operational
cost are expanded depending on which option provides better
profits. By the last year of this experiment, the cloud provider
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Fig. 1. The annual profits for the four cases under consideration.

is forced to build datacenters in all location to process the huge
amount of traffic load.

In the second experiment, we study the effect of using fixed
PUE value vs varying PUE values as well as using flat rate
electricity pricing vs dynamic pricing. Thus, the four cases
under consideration are: (1) fixed PUE and flat rate prices, (2)
fixed PUE and dynamic prices, (3) varying PUE and flat rate
prices and (4) varying PUE and dynamic prices.

Figures 1(a) and 1(b) show the annual profits (original and
inflated) generated for the four cases under consideration.The
effect of inflation (an issue usually ignored in many related
works) is obvious in the two figures. While Figure 1(a) shows
a significant increase in the actual gained profits of each year,
Figure 1(b) shows an opposite trend for the inflated profits
since the profits made in the first year is exposed to inflation
for a longer period of time which makes them much higher
than profits made in the last year, which were not inflated at
all.

From Figure 1(a), it can be seen that using different PUE
values for different times of the day generates (an average
of 2%) better annual profits than using fixed PUE value.
Moreover, using dynamic pricing also has even more positive
effect on the annual profits as it increases them by an average
of 13%. Finally, Mixing both dynamic settings (varying PUE
values and dynamic pricing) causes an average improvement
of 14% on the annual profits. Similar trends are shown in
Figure 1(b) for the annual inflated profits.

V. CONCLUSION

In this work, we addressed the problem of deciding the
best expansion strategy for a given cloud provider by deciding
whether it is beneficial for the cloud provider to build new
datacenters or to simply expand the datacenters it currently
has. We proposed a formulation of the problem that takes into
account the locations and capacities of the future datacenters,
the operational cost of the datacenters, important economical
aspects such as the annual inflation in the costs and revenue.
Traffic and computing resources heterogeneity could increase
the room for better optimizing the usage of today datacenter.
We will be considering this as a future work to extend this
paper.
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